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On Bicomplex Lorentz Sequence Space 
 

 

 

 

Gökhan IŞIK1 

Cenap DUYAR2 

 

 

1.Introduction 

The widely known appendage of the complex number field to 

the four-dimensional field is by a work titled "Algebra on 

Quaternions or a new imaginary system" by W.R. Hamilton in 1844. 

As an idea, Quaternions emerged by take into account three 

imaginary units (𝑖, 𝑗, 𝑘), where 𝑘 = 𝑖𝑗, which are non-commutative. 

The importance of the speculation of quaternions is that it creates a 

field in which entire known operations can be carried out. Loss of 

commutativity can be considered as a deficiency. Although from a 
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fully algebraic point of view the deficiency of commutativity is not 

such a horrible problem, in some studies it poses many hardship, for 

example, when we try to expand the fertile speculation of 

holomorphic functions of a complex variable to quaternions. 

 Therefore, it is not illogical to think whether a four-dimensional 

algebra that includes ℂ as the lower algebra could be included in a 

way that conserves the commutative property. It is not surprising that 

this is done by taking into account two imaginary units 𝑖, 𝑗  by 

publicity 𝑘 = 𝑖𝑗 (even as in the quaternionic case), but now majestic 

𝑖𝑗 = 𝑗𝑖 . This converts k to the hyperbolic imaginary unit, i.e. 

something like 𝑘2 = 1. As far as is known, J. Cockle wrote a series 

of articles in 1848 regarding these new algebra studies. Cockle’s 

work was absolutely encouraged by Hamilton’s and he was the first 

to use tessarin-algebra to insulate the hyperbolic trigonometric series 

as components of the exponential series. Not surprisingly, Cockle 

instantly noticed that there was a price to be paid for commutativity 

in four dimensions, and the compensation was the asset of zero-

divisors. 

Only in 1892, inspired by the study of Hamilton and Clifford, 

did the mathematician Corrado Segre introduce what he named the 

algebra of bicomplex numbers, the equivalent of tessarine algebra. 

In his individual papers, Segre recognized that the elements ((1+ij))⁄2 

and ((1-ij))⁄2 are idempotent and play a head role in even complex 

number speculation . After Segre, several other mathematicians, 

notably (Spampinato, 1935, 1936) and (Scorza Dragoni, 1934), 

advanced the first basics of a speculation of functions on even 

complex numbers. 

 The subsequent grand breakthrough in the work of bicomplex 

analysis was the work of J.D. Riley in 1953, in which he further 

advanced the speculation of functions of bicomplex variables. 

However, the most significant contribution was undoubtedly the 

work of G. B. Price (Price, 1991); here the speculation of 

holomorphic functions of two complex variables (as well as very 

complex variables) was fully developed. Until this monograph, the 
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work of G. B. Price is accepted the foundational study of this 

speculation. 

 However, recently there has been a significant revival of interest 

in the work of holomorphic functions on one and several pairs of 

complex variables, as well as in improvement functional analysis on 

spaces having a build consisting of modules on two rings of complex 

numbers. B. Sağır one of those who carried out these studies has 

carried out many studies on 𝔹ℂ. 

 We now explain the content of this study. First of all, the 

bicomplex number 𝔹ℂ is introduced and its features is explained 

with examples. Hyperbolic numbers, which are a subset of the 

bicomplex set, will be mentioned. A hyperbolic-valued norm is 

defined. The measure space is introduced and accordingly the 

Distribution, Decreasing rearrangement and Average function 

definitions of a function is made. Without changing the basis of these 

definitions, by using the set of Hyperbolic numbers and the 

Hyperbolic valued norm, the 𝔻 -Distribution, 𝔻 -Decreasing 

rearrangement and 𝔻 -Average functions of a sequence with 

Bicomplex terms are created and the properties of these functions 

are examined. 

Definition of Bicomplex Numbers 

The members of set represented by 𝔹ℂ = {𝑧1 + 𝑗𝑧2: 𝑧1, 𝑧2 ∈ ℂ} 
is called bicomplex numbers, where ℂ is the set of complex numbers 

with the virtual unit i, and also where i and 𝑖 ≠ 𝑗 are commuting 

virtual units, i.e., 𝑖𝑗 = 𝑗𝑖 = 𝑘, 𝑖2 = 𝑗2 = −1 and  

𝑘2 = (𝑖𝑗)2 = (𝑖𝑗)(𝑖𝑗) = 𝑖(𝑗𝑖)𝑗 = 𝑖(𝑖𝑗)𝑗 = (𝑖𝑖)(𝑗𝑗) = 𝑖2𝑗2 = 1. 

So bicomplex numbers are “complex numbers with complex 

coefficients”, which express the name of bicomplex, and in what 

follows we will attempt to emphasize the similarities between the 

feature of complex and bicomplex numbers. 

Any two elements in the set of bicomplex numbers can be added 

and multiplied. Let 𝑢 = 𝑢1 + 𝑗𝑢2  and 𝑣 = 𝑣1 + 𝑗𝑣2  are two 
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bicomplex numbers, the formulas for the summation and the product 

of two bicomplex numbers are given by 

𝑢 + 𝑣 = (𝑢1 + 𝑣1) + 𝑗(𝑢2 + 𝑣2)  (1.1) 

and 

𝑢 ⋅ 𝑣 = (𝑢1𝑣1 − 𝑢2𝑣2) + 𝑗(𝑢1𝑣2 + 𝑢2𝑣1) (1.2) 

respectively. According to operations (1.1) and (1.2) described 

above, the set 𝔹ℂ  is a commutative and unitary ring with             

1𝔹ℂ = 1 + 𝑗 ⋅ 0.  

Example 1. Investigate whether the bicomplex number                     

𝑢 = (2 − 𝑖) + 𝑗(1 + 2𝑖) is invertible in the 𝔹ℂ space. 

Solution. Assume that  

𝑢−1 = 𝑣 = 𝑣1 + 𝑗𝑣2 = (𝑥1 + 𝑖𝑦1) + 𝑗(𝑥2 + 𝑖𝑦2) 

with (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ ℝ
4. Then 

𝑢 ⋅ 𝑣 = ((2 − 𝑖) + 𝑗(1 + 2𝑖)) ⋅ ((𝑥1 + 𝑖𝑦1) + 𝑗(𝑥2 + 𝑖𝑦2)) 

  = (2𝑥1 + 𝑦1 − 𝑥2 + 2𝑦2) + 𝑖(−𝑥1 + 2𝑦1 − 2𝑥2 − 𝑦2) 

+𝑗(𝑥1 − 2𝑦1 + 2𝑥2 + 𝑦2) + 𝑖𝑗(2𝑥1 + 𝑦1 − 𝑥2 + 2𝑦2) 

  = 1 + 𝑗 ⋅ 0  

and hence a system of equations  

2𝑥1 + 𝑦1 − 𝑥2 + 2𝑦2 = 1
−𝑥1 + 2𝑦1 − 2𝑥2 − 𝑦2 = 0   
𝑥1 − 2𝑦1 + 2𝑥2 + 𝑦2 = 0
2𝑥1 + 𝑦1 − 𝑥2 + 2𝑦2 = 0

  (1.3) 

is obtained, if the coefficients of the mutual imaginary components 

in this equation are equalized. Since the system of equations (1.3) 

has no solution, 𝑢 = (2 − 𝑖) + 𝑗(1 + 2𝑖)  has no inverse in 𝔹ℂ . 

Then, since every element of 𝔹ℂ is not invertible with respect to 

multiplication, we can say that 𝔹ℂ is not a field.  
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 In addition, when 𝑧2 = 0 in 𝑧 = 𝑧1 + 𝑗𝑧2, that is, 𝑧 = 𝑧1, the set 

of these numbers is represented by ℂ(𝑖). If the 𝑧1 and 𝑧2 coefficients 

are real numbers, that is, 𝑧 = 𝑥1 + 𝑗𝑥2  with 𝑥1, 𝑥2 ∈ ℝ, the set of 

those numbers is represented by ℂ(𝑗). ℂ(𝑖) and ℂ(𝑗) are isomorphic 

fields but coexisting internal of  𝔹ℂ they are distinct. We will see 

many times in what follows that there is a specific asymmetry in their 

attitude. 

Definition 1. The set of hyperbolic numbers is described by  

𝔻 = {𝑥 + 𝑘𝑦: 𝑥, 𝑦 ∈ ℝ, 𝑘 = 𝑖𝑗}, 

where 𝑘  is a hyperbolic virtual unit, i.e., 𝑘2 = 1 . In the studies 

conducted in the current literature, hyperbolic numbers are 

sometimes called duplex, double or bireal numbers. The following 

subsets 𝔻+  and 𝔻+\{0} of 𝔻 are called non-negative and positive 

hyperbolic numbers, respectively: 

𝔻+ = {𝑥 + 𝑘𝑦: 𝑥2 − 𝑦2 ≥ 0, 𝑥2 ≥ 0} (1.4) 

𝔻+\{0} = {𝑥 + 𝑘𝑦: 𝑥2 − 𝑦2 ≥ 0, 𝑥2 > 0}.  (1.5) 

Similarly, non-negative and negative hyperbolic numbers are 

defined as follows: 

 𝔻− = {𝑥 + 𝑘𝑦: 𝑥2 − 𝑦2 ≥ 0, 𝑥2 ≤ 0} (1.6) 

 𝔻−\{0} = {𝑥 + 𝑘𝑦: 𝑥2 − 𝑦2 ≥ 0, 𝑥2 < 0}.    (1.7) 

 Idempotent Representations of Bicomplex Numbers 

Consider the bicomplex numbers 𝑒1 =
1+𝑖𝑗

2
 and 𝑒2 =

1−𝑖𝑗

2
. It can be 

easily seen that 𝑒1 ⋅ 𝑒2 = 𝑒2 ⋅ 𝑒1 = 0 . There are also equations 
(𝑒1)

𝑛 = 𝑒1 , (𝑒2)
𝑛 = 𝑒2  with 𝑛 ≥ 2 . For any bicomplex number  

𝑢 = 𝑢1 + 𝑗𝑢2 ∈ 𝔹ℂ, we have 

𝑢 =
𝑢1 + 𝑖𝑢2 + 𝑢1 − 𝑖𝑢2

2
+ 𝑗

𝑢2 + 𝑖𝑢1 + 𝑢2 − 𝑖𝑢1
2

 

 =
𝑢1 − 𝑖𝑢2

2
+
𝑢1 + 𝑖𝑢2

2
+ 𝑗 (𝑖

𝑢1 − 𝑖𝑢2
2

− 𝑖
𝑢1 + 𝑖𝑢2

2
) 



 

--11-- 

 

 =
𝑢1 − 𝑖𝑢2

2
(1 + 𝑖𝑗) +

𝑢1 + 𝑖𝑢2
2

(1 + 𝑖𝑗) 

= (𝑢1 − 𝑖𝑢2)𝑒1 + (𝑢1 + 𝑖𝑢2)𝑒2 = 𝛿1𝑒1 + 𝛿2𝑒2    (1.8) 

with 𝛿1 = (𝑢1 − 𝑖𝑢2)  and 𝛿2 = (𝑢1 + 𝑖𝑢2)  in ℂ(𝑖) . This equality 

(1.8) is named the ℂ(𝑖)-idempotent representation of the bicomplex 

number 𝑢. 

Similarly, along with the coefficients in ℂ(𝑗), there is also a 

representation of the bicomplex number 𝑢 with respect to 𝑒1 and 𝑒2. 

As a result, any bicomplex number has an idempotent 

representation with its coefficients in any of ℂ(𝑖) or ℂ(𝑗), that is, 

𝑢 = 𝛿1𝑒1 + 𝛿2𝑒2 = 𝜌1𝑒1 + 𝜌2𝑒2  where 𝛿1, 𝛿2 ∈ ℂ(𝑖)  and       

𝜌1, 𝜌2 ∈ ℂ(𝑗). 

 A Partial Order on The Set of Hyperbolic Numbers 

Let 𝑢 and 𝑣 be two elements of the set 𝔻+. If 𝑢 − 𝑣 ∈ 𝔻+, that is, 

𝑢 − 𝑣 is a non-negative hyperbolic number, then we write 𝑢 ≽ 𝑣 or 

𝑣 ≼ 𝑢, and also 𝑢 is said to be 𝔻-greater or 𝔻-equal than 𝑣, or that 

𝑣 is 𝔻-less or 𝔻-equal than 𝑢.  

 If 𝑢 = 𝑢1𝑒1 + 𝑢2𝑒2  and 𝑣 = 𝑣1𝑒1 + 𝑣2𝑒2 , with real numbers 

𝑢1, 𝑢2, 𝑣1 and 𝑣2, we have  

𝑣 ≼ 𝑢 ⇔ 𝑣1 ≤ 𝑢1  ∧  𝑣2 ≤ 𝑢2. (1.9) 

Also 𝑢  is a (absolutely) positive hyperbolic number, then it is 

reversed and its inverse is also positive. Additionally, if 𝑢 ≻ 0 and 

𝑢 ≺ 𝑣, then 𝑣−1 ≻ 0 and 𝑣−1 ≺ 𝑢−1 (Luna-Elizarrarás, M.E. & et 

al., 2015). 

 The Hyperbolic-Valued 𝔻-Norm on 𝔹ℂ 

A function |. |𝑘  defined from 𝔹ℂ  to 𝔻+  with                                      
|𝑢|𝑘 = |𝑢1|𝑒1 + |𝑢2|𝑒2  for each 𝑢 = 𝑢1𝑒1 + 𝑢2𝑒2 ∈ 𝔹ℂ  provides 

the following properties. 

 𝑁1) Since |𝑢1| ≥ 0 and |𝑢2| ≥ 0 for a 𝑢 = (𝑢1𝑒1 + 𝑢2𝑒2) in 

𝔹ℂ, we have |𝑢|𝑘 = |𝑢1|𝑒1 + |𝑢2|𝑒2 ≽ 0𝑒1 + 0𝑒2 = 0. 
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 𝑁2) Let |𝑢|𝑘 = |𝑢1|𝑒1 + |𝑢2|𝑒2 = 0 = 0𝑒1 + 0𝑒2  for any 

𝑢 = (𝑢1𝑒1 + 𝑢2𝑒2) ∈ 𝔹ℂ. Hence |𝑢1| = 0 ve |𝑢2| = 0, namely,  

 

𝑢 = 0𝑒1 + 0𝑒2 = 0. It is clear that |𝑢|𝑘 = 0 when 𝑢 = 0. 

𝑁3) Let 𝑢 = (𝑢1𝑒1 + 𝑢2𝑒2) in 𝔹ℂ and 𝜆 in 𝔻. Then 

|𝜆𝑢|𝑘 = |(𝜆1𝑒1 + 𝜆2𝑒2)(𝑢1𝑒1 + 𝑢2𝑒2)|𝑘 

 = |(𝜆1𝑢1)𝑒1 + (𝜆2𝑢2)𝑒2|𝑘 

 = |𝜆1𝑢1|𝑒1 + |𝜆2𝑢2|𝑒2 

 = |𝜆1||𝑢1|𝑒1 + |𝜆2||𝑢2|𝑒2 

 = (|𝜆1|𝑒1 + |𝜆2|𝑒2)(|𝑢1|𝑒1 + |𝑢2|𝑒2) 

 = |𝜆|𝑘|𝑢|𝑘. 

𝑁4) Let 𝑢  and 𝑣  with 𝑢 = (𝑢1𝑒1 + 𝑢2𝑒2)  and                            

𝑣 = (𝑣1𝑒1 + 𝑣2𝑒2) be two elements in 𝔹ℂ. Then  

|𝑢 + 𝑣|𝑘 = |(𝑢1𝑒1 + 𝑢2𝑒2) + (𝑣1𝑒1 + 𝑣2𝑒2)|𝑘 

  = |(𝑢1 + 𝑣1)𝑒1 + (𝑢2 + 𝑣2)𝑒2|𝑘 

  = |𝑢1 + 𝑣1|𝑒1 + |𝑢2 + 𝑣2|𝑒2 

≼ (|𝑢1| + |𝑣1|)𝑒1 + (|𝑢2| + |𝑣2|)𝑒2 

  = (|𝑢1|𝑒1 + |𝑢2|𝑒2) + (|𝑣1|𝑒1 + |𝑣2|𝑒2) 

  = |𝑢|𝑘 + |𝑣|𝑘. 

 As a result of the conditions 𝑁1), 𝑁2), 𝑁3) and 𝑁4), it is seen that 
|⋅|𝑘 is a 𝔻-norm. This norm is named the hyperbolic-valued norm. 

 Distribution Functions 

A collection 𝒢  of subsets of a set 𝐺  is named a 𝜎 −algebra if it 

supply the following circumstances: 

i. 𝐺 ∈ 𝒢. 

ii. 𝑆 ∈ 𝒢 then 𝐺\𝑆 ∈ 𝒢. 
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 iii. If (𝐼𝑘)𝑘 ⊆ 𝒢 is a sequence, then ⋃ 𝐼𝑘
∞
𝑘=1 ∈ 𝒢. 

The couple (𝐺, 𝒢) is named a measurable space and each element of 

 𝒢 is named a measurable set (Halmos, 1978).  

 Let  𝒢  be a 𝜎 -algebra. A function 𝜇: 𝒢 → [0,∞)  is named a 

measure, if it supply the following circumstances: 

 i. 𝜇(∅) = 0. 

 ii. 𝜇(⋃ 𝐼𝑘
∞
𝑘=1 ) = ∑ 𝜇(𝐼𝑘)

∞
𝑘=1  for any sequence (𝐼𝑘)𝑘  of 

pairwise disjoint sets from 𝒢, that is, 𝐼𝑘 ∩ 𝐼𝑗 = ∅ for 𝑗 ≠ 𝑘. 

Additionally, the trinity (𝐺, 𝒢, 𝜇) is said a measure space. 

Definition 2. Let (𝐺, 𝒢, 𝜇) be a measure space and 𝔐(𝐺, 𝒢) be the 

set of all measurable complex-valued functions on 𝐺 . The 

distribution function 𝐷𝑔 of a function 𝑔 in 𝔐(𝐺, 𝒢) is given by  

𝐷𝑔(𝜆) = 𝜇{𝑥 ∈ 𝐺: |𝑔(𝑥)| > 𝜆 ≥ 0}    (1.10) 

(Castillo & Rafeiro, 2015). 

 Decreasing Rearrangement  

Definition 3. Let a 𝑔 ∈ 𝔐(𝐺, 𝒢) be given. The function determined 

as  

𝑔∗(𝑡) = 𝑖𝑛𝑓{𝜆 ≥ 0: 𝐷𝑔(𝜆) ≤ 𝑡} = 𝑠𝑢𝑝{𝜆 ≥ 0: 𝐷𝑔(𝜆) > 𝑡} (1.11) 

is described the decreasing rearrangement function of 𝑔. According 

to this definition, it is clear that the function 𝑔∗ is defined from [0,∞] 
to [0,∞] (Eryılmaz& Işık, 2019). 

Definition 4. Let a 𝑔 ∈ 𝔐(𝐺, 𝒢) be given. The average function of 

𝑔∗, which we will denote by 𝑔∗∗, is defined by  

𝑔∗∗(𝑚) =
1

𝑚
∫ 𝑔∗(𝑡)
𝑚

0

𝑑𝑡,𝑚 > 0                (1.12) 

(Eryılmaz& Işık, 2019). 
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2. 𝔻-Distribution and 𝔻-Decreasing Rearrangement 

Functions of Sequences with Bicomplex Terms 

Let 𝒲𝔹ℂ be the set of sequences with all bicomplex terms and 𝒢 be 

the power set of ℕ, namely 𝒢 = 2ℕ, and 𝜇 be counting measure on 

𝒢. 

 𝔻-Distribution function 

In the definition of the 𝔻-distribution function, a sequence with 

bicomplex terms instead of the measurable function and the non-

negative hyperbolic number instead of the non-negative real number 

in definition of general distribution function, given in (1.10), is used. 

Definition 5. Let 𝓊 = (𝓊(𝓃))
𝓃

 with                                                    

𝓊(𝓃) = 𝓊1(𝓃)𝑒1 +𝓊2(𝓃)𝑒2 be a arbitrary sequence in 𝔹ℂ and a 

number 𝜆1𝑒1 + 𝜆2𝑒2 = 𝜆 ∈ 𝔻+  be given. The 𝔻 -distribution 

function 𝒟𝓊 of 𝓊 is defined by  

𝒟𝓊(𝜆) = 𝐷𝓊1(𝜆1)𝑒1 + 𝐷𝓊2(𝜆2)𝑒2.  (2.1) 

Definition 6. A function 𝒽 defined from 𝔻+ to 𝔻+, is called a 𝔻-

decreasing function, if there is a 𝔻 -inequality 𝒽(𝛽) ≼ 𝒽(𝛼) , 

whenever 𝛼 ≺ 𝛽. 

Lemma 1. Let 𝜆 be an element in 𝔻 with 𝜆 = 𝜆1𝑒1 + 𝜆2𝑒2 and 𝛿 be 

an element in 𝔻 with 𝛿 = 𝛿1𝑒1 + 𝛿2𝑒2 , 𝛿1 ≠ 0 and 𝛿2 ≠ 0. There 

exist the equality 
𝜆

|𝛿|𝑘
=
𝜆1
|𝛿1|

𝑒1 +
𝜆2
|𝛿2|

𝑒2. 

Proof. We have 

𝜆

|𝛿|𝑘
=

𝜆1𝑒1 + 𝜆2𝑒2
|𝛿1|𝑒1 + |𝛿2|𝑒2

=
𝜆1𝑒1

|𝛿1|𝑒1 + |𝛿2|𝑒2
+

𝜆2𝑒2
|𝛿1|𝑒1 + |𝛿2|𝑒2

 

 =
𝜆1𝑒1𝑒1

(|𝛿1|𝑒1 + |𝛿2|𝑒2)𝑒1
+

𝜆2𝑒2𝑒2
(|𝛿1|𝑒1 + |𝛿2|𝑒2)𝑒2
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 =
𝜆1𝑒1𝑒1
|𝛿1|𝑒1

+
𝜆2𝑒2𝑒2
|𝛿2|𝑒2

=
𝜆1
|𝛿1|

𝑒1 +
𝜆2
|𝛿2|

𝑒2. 

Theorem 1. Let 𝓊 = (𝓊(𝓃)) and 𝓋 = (𝓋(𝑛)) be two sequences in 

𝒲𝔹ℂ  and 𝜆 , 𝛿  and 𝑐  be in 𝔻+ . Then, the following features are 

satisfied: 

a) 𝔻-distribution function is 𝔻-decreasing. 

b) If |𝓋(𝓃)|𝑘 ≼ |𝓊(𝓃)|𝑘 for all 𝓃 ≥ 1, then 𝒟𝓋(𝜆) ≼ 𝒟𝓊(𝜆). 

c) 𝒟𝑐𝓊(𝜆) = 𝒟𝓊 (
𝜆

|𝑐|𝑘
) for all 𝑐 ∈ 𝔻+, where 𝑐 = 𝑐1𝑒1 + 𝑐2𝑒2 

and 𝑐1 ≠ 0 ≠ 𝑐2. 

d) 𝒟𝓊+𝓋(𝜆 + 𝛿) ≼ 𝒟𝓊(𝜆) + 𝒟𝓋(𝛿). 

e) 𝒟𝓊⋅𝓋(𝜆 ⋅ 𝛿) ≼ 𝒟𝓊(𝜆) + 𝒟𝓋(𝛿). 

Proof. a) Assume that 𝜆 = 𝜆1𝑒1 + 𝜆2𝑒2 , 𝛿 = 𝛿1𝑒1 + 𝛿2𝑒2  and     

𝛿 ≺ 𝜆 . Since distribution functions 𝐷𝓊1 and 𝐷𝓊2  are decreasing 

(Castillo & Rafeiro, 2015), obviously 

𝒟𝓊(𝜆) = 𝐷𝓊1(𝜆1)𝑒1 + 𝐷𝓊2(𝜆2)𝑒2 

≼ 𝐷𝓊1(𝛿1)𝑒1 + 𝐷𝓊2(𝛿2)𝑒2 = 𝒟𝓊(𝛿). 

Hence 𝒟𝓊 is 𝔻-decreasing function. 

 b) Assume that |𝓋(𝓃)|𝑘 ≼ |𝓊(𝓃)|𝑘 for all 𝓃 ≥ 1. Then we 

can write 

|𝓋1(𝓃)|𝑒1 + |𝓋2(𝓃)|𝑒2 ≼ |𝓊1(𝓃)|𝑒1 + |𝓊2(𝓃)|𝑒2 

⇔ |𝓋1(𝓃)| ≤ |𝓊1(𝓃)| and |𝓋2(𝓃)| ≤ |𝓊2(𝓃)|. 

Thus  

{𝓃 ∈ ℕ: |𝓋𝓂(𝓃)| > 𝜆1} ⊆ {𝓃 ∈ ℕ: |𝓊𝓂(𝓃)| > 𝜆1},𝓂 = 1,2, 

and therefore 𝐷𝓋1(𝜆1) ≤ 𝐷𝓊1(𝜆1) and 𝐷𝓋2(𝜆2) ≤ 𝐷𝓊2(𝜆2). This 

shows that 𝒟𝓋(𝜆) ≼ 𝒟𝓊(𝜆). 

 c) According to the definition of 𝔻-distribution function,  
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𝒟𝑐𝓊(𝜆) = 𝐷𝑐1𝓊1(𝜆1)𝑒1 + 𝐷𝑐2𝓊2(𝜆2)𝑒2 

is written. We can easily see that 

𝜇{𝓃 ∈ ℕ: |𝑐𝓂𝓊𝓂(𝓃)| > 𝜆1} = 𝜇 {𝓃 ∈ ℕ: |𝓊𝓂(𝓃)| >
𝜆1
|𝑐𝓂|

} 

 = 𝐷𝓊𝓂 (
𝜆1
|𝑐𝓂|

) ,𝓂 = 1,2. 

Then 

𝐷𝑐1𝓊1(𝜆1)𝑒1 + 𝐷𝑐2𝓊2(𝜆2)𝑒2 = 𝐷𝓊1 (
𝜆1
|𝑐1|

) 𝑒1 + 𝐷𝓊2 (
𝜆2
|𝑐2|

) 𝑒2 

and hence  

𝒟𝑐𝓊(𝜆) = 𝒟𝓊 (
𝜆

|𝑐|𝑘
). 

 d) Considering the distribution functions 𝐷(𝓊𝓂+𝓋𝓂)(𝜆𝓂 + 𝛿𝓂) 

with 𝓂 = 1,2; we have 

{𝓃 ∈ ℕ: 𝜆𝓂 + 𝛿𝓂 < |𝓊𝓂(𝓃) + 𝓋𝓂(𝓃)|} ⊂ 

{𝓃 ∈ ℕ: 𝜆𝓂 < |𝓊𝓂(𝓃)|} ∪ {𝓃 ∈ ℕ: 𝛿𝓂 < |𝓋𝓂(𝓃)|} 

and hence 

𝐷(𝓊𝓂+𝓋𝓂)(𝜆𝓂 + 𝛿𝓂) ≤ 𝐷𝓊𝓂(𝜆𝓂) + 𝐷𝓋𝓂(𝛿𝓂). 

Using these inequalities, we obtain 𝔻-inequality 

𝒟𝓊+𝓋(𝜆 + 𝛿) = 𝐷(𝓊1+𝓋1)(𝜆1 + 𝛿1)𝑒1 + 𝐷(𝓊2+𝓋2)(𝜆2 + 𝛿2)𝑒2 

 ≼ {𝐷𝓊1(𝜆1) + 𝐷𝓋1(𝛿1)}𝑒1 + {𝐷𝓊2(𝜆2) + 𝐷𝓋2(𝛿2)}𝑒2 

= {𝐷𝓊1(𝜆1)𝑒1 + 𝐷𝓊2(𝜆2)𝑒2} + {𝐷𝓋1(𝛿1)𝑒1 + 𝐷𝓋2(𝛿2)𝑒2} 

finally 

𝒟𝓊+𝓋(𝜆 + 𝛿) ≼ 𝒟𝓊(𝜆) + 𝒟𝓋(𝛿).   (2.2) 

 e) Using the definitions of the distribution functions  
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𝐷(𝓊𝓂⋅𝓋𝓂)(𝜆𝓂 ⋅ 𝛿𝓂) with 𝓂 = 1,2; we have 

{𝓃 ∈ ℕ: 𝜆𝓂 ⋅ 𝛿𝓂 < |𝓊𝓂(𝓃) ⋅ 𝓋𝓂(𝓃)|} 

⊂ {𝓃 ∈ ℕ: 𝜆𝓂 < |𝓊𝓂(𝓃)|} ∪ {𝓃 ∈ ℕ: 𝛿𝓂 < |𝓋𝓂(𝓃)|} 

and hence 

𝐷(𝓊𝓂⋅𝓋𝓂)(𝜆𝓂 ⋅ 𝛿𝓂) ≤ 𝐷𝓊𝓂(𝜆𝓂) + 𝐷𝓋𝓂(𝛿𝓂) 

Also the inequalities above allow us to write  

 𝒟𝓊⋅𝓋(𝜆 ⋅ 𝛿) = 𝐷(𝓊1⋅𝓋1)(𝜆1 ⋅ 𝛿1)𝑒1 + 𝐷(𝓊2⋅𝓋2)(𝜆2 ⋅ 𝛿2)𝑒2 

≼ {𝐷𝓊1(𝜆1) + 𝐷𝓋1(𝛿1)}𝑒1 + {𝐷𝓊2(𝜆2) + 𝐷𝓋2(𝛿2)}𝑒2 

= {𝐷𝓊1(𝜆1)𝑒1 + 𝐷𝓊2(𝜆2)𝑒2} + {𝐷𝓋1(𝛿1)𝑒1 + 𝐷𝓋2(𝛿2)𝑒2} 

and so 

𝒟𝓊⋅𝓋(𝜆 ⋅ 𝛿) ≼ 𝒟𝓊(𝜆) + 𝒟𝓋(𝛿).  (2.3) 

 𝔻-Decreasing Rearrangement Function 

Definition 7. If there is 𝜌 ∈ 𝔻 such that 𝑔 ≼ 𝜌(𝜌 ≼ 𝑔) for all 𝑔 ∈
𝐺 , then it is said that a subset 𝐺 ⊂ 𝔻  is 𝔻 -frontiered from 

above(lower). This number 𝜌 ∈ 𝔻  is called a 𝔻 -top(𝔻 -inferior) 

frontier of 𝐺. 

If 𝐺 ⊂ 𝔻 is a 𝔻-frontiered set from upstairs, then we describe 

the its 𝔻-supremum showed by 𝑠𝑢𝑝𝔻𝐺, the smallest top frontier of 

𝐺, and its 𝔻-infimum showed by 𝑖𝑛𝑓𝔻𝐺, the hugest inferior frontier 

of 𝐺. The “least” top frontier here means that 𝑠𝑢𝑝𝔻𝐺 ≼ 𝜌 for any  

𝔻-top frontier 𝜌 even if not all of the 𝔻-top frontiers are comparable. 

Likewise, the meaning of the “hugest” inferior frontier can be 

evaluate. Surely, every non-empty set of hyperbolic numbers which 

is 𝔻 -frontier from upstairs has its 𝔻 -supremum, and if it is                 

𝔻 -frontier from inferior, then it has a 𝔻 -infimum. Given a set        

𝐺 ⊂ 𝔻, think the sets 

𝐺1 = {𝑔1: 𝑔1𝑒1 + 𝑔2𝑒2 ∈ 𝐺} and 𝐺2 = {𝑔2: 𝑔1𝑒1 + 𝑔2𝑒2 ∈ 𝐺}. 

 If 𝐺 is a 𝔻-frontiered set from upstairs, then the 𝑠𝑢𝑝𝔻𝐺 can be  
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calculated by the formula 

𝑠𝑢𝑝𝔻𝐺 = 𝑠𝑢𝑝𝐺1𝑒1 + 𝑠𝑢𝑝𝐺2𝑒2.  (2.4) 

If 𝐺 is a 𝔻-frontiered set from below, then the 𝑖𝑛𝑓𝔻𝐺 can be 

calculated by the formula 

𝑖𝑛𝑓𝔻𝐺 = 𝑖𝑛𝑓𝐺1𝑒1 + 𝑖𝑛𝑓𝐺2𝑒2.   (2.5) 

If 𝐺 and 𝐻 are two 𝔻-frontiered set from inferior, then so is 

𝐺 + 𝐻 and  

𝑖𝑛𝑓𝔻(𝐺 + 𝐻) = 𝑖𝑛𝑓𝔻𝐺 + 𝑖𝑛𝑓𝔻𝐻  (2.6) 

holds.  

 If two subsets 𝐺 ⊂ 𝔻+  and 𝐻 ⊂ 𝔻+  are 𝔻 -frontiered from 

inferior, then so is 𝐺 ⋅ 𝐻 and  

𝑖𝑛𝑓𝔻(𝐺 ⋅ 𝐻) = 𝑖𝑛𝑓𝔻𝐺 ⋅ 𝑖𝑛𝑓𝔻𝐻   (2.7) 

holds. 

 For the top  𝔻-frontiered subsets of 𝔻, the equations (2.6) to 

(2.7) are still true when 𝑠𝑢𝑝𝔻  is written instead of 𝑖𝑛𝑓𝔻                

(Luna-Elizarrarás, M.E. & et al., 2015). 

Definition 8. The 𝔻 -decreasing rearrangement of a sequence         

𝓊 = (𝓊(𝓃)) in 𝒲𝔹ℂ is a function 𝓊∗ defined by  

𝓊∗(𝓉) = 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼ 𝓉} 

from 𝔻+ to 𝔻+. Since 𝐷𝓊𝒾  with 𝒾 = 1,2 is decreasing,  

𝑖𝑛𝑓{𝜆1 ≥ 0:𝐷𝓊1(𝜆1) ≤𝐷𝓊2(𝛽1)} = 𝛽1 

and  

𝑖𝑛𝑓{𝜆2 ≥ 0:𝐷𝓊2(𝜆2) ≤𝐷𝓊2(𝛽2)} = 𝛽2 

holds. Therefore, 

𝓊∗(𝒟𝓊(𝛽)) = 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼𝒟𝓊(𝛽)} 

= 𝑖𝑛𝑓{𝜆1 ≥ 0:𝐷𝓊1(𝜆1) ≤𝐷𝓊2(𝛽1)}𝑒1 
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+𝑖𝑛𝑓{𝜆2 ≥ 0:𝐷𝓊2(𝜆2) ≤𝐷𝓊2(𝛽2)}𝑒2 = 𝛽, 

𝓊∗ is the left inverse of 𝒟𝓊. 

 Morever, let 𝓊(𝓃) = 𝓊1(𝓃)𝑒1 +𝓊2(𝓃)𝑒2 ,                                 

𝜆 = (𝜆1𝑒1 + 𝜆2𝑒2) and 𝓉 = (𝓉1𝑒1 + 𝓉2𝑒2). Then  

𝓊∗(𝑡) = 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼ 𝓉} 

 = 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝐷𝓊1(𝜆1)𝑒1 + 𝐷𝓊2(𝜆2)𝑒2 ≼ 𝓉1𝑒1 + 𝓉2𝑒2} 

 = 𝑖𝑛𝑓{𝜆1: 𝐷𝓊1(𝜆1) ≤ 𝓉1}𝑒1 + 𝑖𝑛𝑓{𝜆2: 𝐷𝓊2(𝜆2) ≤ 𝓉2}𝑒2 

and so  

𝓊∗(𝓉) = 𝓊1
∗(𝓉1)𝑒1 +𝓊2

∗(𝓉2)𝑒2.   (2.8) 

Theorem 2. Let 𝓊 = (𝓊(𝓃))  be a sequence in 𝒲𝔹ℂ  and                   

𝜆 = (𝜆1𝑒1 + 𝜆2𝑒2), 𝓉 = (𝓉1𝑒1 + 𝓉2𝑒2) be two elements in 𝔻+. The 

𝔻 -decreasing rearrangement function of 𝓊  has the following 

properties: 

a) 𝓊∗ is 𝔻-decreasing. 

b) 𝓊∗(𝓉) ≻ 𝜆 necessary and sufficient condition 𝒟𝓊(𝜆) ≻ 𝓉. 

c) (𝜅𝓊)∗(𝓉) = |𝜅|𝑘𝓊
∗(𝓉), 𝜅 ∈ 𝔻+. 

d) Let (𝓊(𝓃)) and (𝓋(𝓃)) be two sequences in 𝒲𝔹ℂ. If 
|𝓊(𝓃)|𝑘 ≺ |𝓋(𝓃)|𝑘 for every 𝓃 = 1,2, … then 𝓊∗(𝓉) ≼ 𝓋∗(𝓉). 

e) [(|𝓊(𝓃)|𝑘)
𝑝]∗ = (𝓊∗(𝓃))

𝑝
, 𝑝 ≥ 1. 

Proof. 

a) Let 0 ≼ 𝓉 ≺ 𝑘, then 𝓉1 ≤ 𝑘1  ∧  𝓉2 ≤ 𝑘2. 

This shows that 

{𝜆1 ≥ 0:𝐷𝓊1(𝜆1) ≤𝓉1} ⊂ {𝜆1 ≥ 0:𝐷𝓊1(𝜆1) ≤ 𝑘1} 

and  

{𝜆2 ≥ 0:𝐷𝓊2(𝜆2) ≤𝓉2} ⊂ {𝜆2 ≥ 0:𝐷𝓊2(𝜆2) ≤ 𝑘2} 
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therefore, 

{𝜆 ∈ 𝔻+: 𝒟𝓊(𝜆) ≼ 𝓉} ⊂ {𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼ 𝑘} 

obviously 

𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼ 𝑘} ≼ 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻

+: 𝒟𝓊(𝜆) ≼ 𝓉} 

that is, 

𝓊∗(𝑘) ≼ 𝓊∗(𝓉). 
b) Let 𝜆 ≺ 𝓊∗(𝓉). Then 

𝜆 ≺ 𝑖𝑛𝑓𝔻{𝛼 ∈ 𝔻
+: 𝒟𝓊(𝛼) ≼ 𝓉} 

namely  

𝜆1𝑒1 + 𝜆2𝑒2  

≺ 𝑖𝑛𝑓𝔻{𝛼 ∈ 𝔻
+: 𝐷𝓊1(𝛼1)𝑒1 + 𝐷𝓊2(𝛼2)𝑒2  ≼ 𝓉1𝑒1 + 𝓉2𝑒2} 

= 𝑖𝑛𝑓{𝛼1: 𝐷𝓊1(𝛼1) ≤ 𝓉1}𝑒1 + 𝑖𝑛𝑓{𝛼2: 𝐷𝓊2(𝛼2) ≤ 𝓉2}𝑒2. 

Thus 

𝜆1 < 𝑖𝑛𝑓{𝛼1: 𝐷𝓊1(𝛼1) ≤ 𝓉1} and 𝜆2 < 𝑖𝑛𝑓{𝛼2: 𝐷𝓊2(𝛼2) ≤ 𝓉2} 

and so 𝐷𝓊1(𝜆1) > 𝓉1, 𝐷𝓊2(𝜆2) > 𝓉2. Obviously 𝒟𝓊(𝜆) ≻ 𝓉. 

Conversely, let 𝓉 ≺ 𝒟𝓊(𝜆). Suppose that 𝓊∗(𝓉) ≼ 𝜆. Since 𝒟𝓊 

is 𝔻-decreasing, we have 𝒟𝓊(𝜆) ≼ 𝒟𝓊(𝓊
∗(𝓉)) ≼ 𝓉  contradicting 

our hypothesis. 

c) By the Theorem 1, we write 

(𝜅𝓊)∗(𝓉) = 𝑖𝑛𝑓𝔻{𝛼 ∈ 𝔻
+: 𝒟𝜅𝓊(𝛼) ≼ 𝓉}  

= 𝑖𝑛𝑓𝔻 {𝛼 ∈ 𝔻
+: 𝒟𝓊 (

𝛼

|𝜅|𝑘
) ≼ 𝓉}. 

If it is said 
𝛼

|𝜅|𝑘
= 𝛽 ∈ 𝔻+, then we have 𝛼 = |𝜅|𝑘 ⋅ 𝛽 and so  

𝑖𝑛𝑓𝔻{|𝜅|𝑘 ⋅ 𝛽 ∈ 𝔻
+: 𝒟𝓊(𝛽) ≼ 𝓉} 
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= 𝑖𝑛𝑓𝔻{(|𝜅1|𝑒1 + |𝜅2|𝑒2) ⋅ (𝛽1𝑒1 + 𝛽2𝑒2) ∈ 𝔻
+:  𝒟𝓊(𝛽) ≼ 𝓉 } 

 = 𝑖𝑛𝑓𝔻{(|𝜅1|𝛽1)𝑒1 + (|𝜅2|𝛽2)𝑒2 ∈ 𝔻
+:  𝒟𝓊(𝛽) ≼ 𝓉} 

 = 𝑖𝑛𝑓{|𝜅1|𝛽1: 𝐷𝓊1(𝛽1) ≤ 𝓉1}𝑒1 + 𝑖𝑛𝑓{|𝜅2|𝛽2: 𝐷𝓊2(𝛽2) ≤ 𝓉2}𝑒2 

 = (|𝜅1|𝑖𝑛𝑓{𝛽1: 𝐷𝓊1(𝛽1) ≤ 𝓉1})𝑒1
+ (|𝜅2|𝑖𝑛𝑓{𝛽2: 𝐷𝓊2(𝛽2) ≤ 𝓉2})𝑒2 

 = (|𝜅1|𝑒1 + |𝜅2|𝑒2)(𝑖𝑛𝑓{𝛽1: 𝐷𝓊1(𝛽1) ≤ 𝓉1}𝑒1
+ 𝑖𝑛𝑓{𝛽2: 𝐷𝓊2(𝛽2) ≤ 𝓉2}𝑒2) 

 = |𝜅|𝑘 ⋅ 𝑖𝑛𝑓𝔻{𝛽 ∈ 𝔻
+: 𝒟𝓊(𝛽) ≼𝓉} 

 = |𝜅|𝑘 ⋅ 𝓊
∗(𝓉). 

d) If |𝓊|𝑘 ≺ |𝓋|𝑘 , then the inequality 𝒟𝓊(𝜆) ≼ 𝒟𝓋(𝜆)  is 

obtained from the Theorem 1. 

Since 𝒟𝓊(𝜆) ≼ 𝒟𝓋(𝜆), we have 

𝐷𝓊1(𝜆1) ≤ 𝐷𝓋1(𝜆1)  ∧ 𝐷𝓊2(𝜆2) ≤ 𝐷𝓋2(𝜆2). 

This shows that 

{𝜆1 ≥ 0:𝐷𝓋1(𝜆1) ≤𝓉1} ⊂ {𝜆1 ≥ 0:𝐷𝓊1(𝜆1) ≤ 𝓉1}  

and 

{𝜆2 ≥ 0:𝐷𝓋2(𝜆2) ≤𝓉2} ⊂ {𝜆2 ≥ 0:𝐷𝓊2(𝜆2) ≤ 𝓉2} 

as a result 

{𝜆 ∈ 𝔻+: 𝒟𝓋(𝜆) ≼𝓉} ⊂ {𝜆 ∈ 𝔻+: 𝒟𝓊(𝜆) ≼ 𝓉} 

and so 

𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻
+: 𝒟𝓊(𝜆) ≼𝓉} ≼ 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻

+: 𝒟𝓋(𝜆) ≼ 𝓉}, 

namely  

𝓊∗(𝓉) ≼ 𝓋∗(𝓉). 

e) Let 𝑝 ∈ ℝ and 𝜆 ∈ 𝔹ℂ then (𝜆1𝑒1 + 𝜆2𝑒2)
𝑝 = 𝜆1

𝑝𝑒1 + 𝜆2
𝑝𝑒2 

(Sağır & Değirmen, 2022). 
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Also in case of using the properties of 𝒟𝓊(𝜆)  

𝒟((|𝓊|𝑘)𝑝)(𝜆) = 𝒟((|𝓊1|𝑒1+|𝓊2|𝑒2)𝑝)(𝜆) = 𝒟(|𝓊1|𝑝𝑒1+|𝓊2|𝑝𝑒2)(𝜆) 

  = 𝐷|𝓊1|𝑝(𝜆1)𝑒1 + 𝐷|𝓊2|𝑝(𝜆2)𝑒2. (2.9) 

Using the definitions of the distribution functions 𝐷𝓊𝒾(𝜆𝒾)  with     

𝒾 = 1,2 we have 

𝐷|𝓊𝒾|𝑝(𝜆𝒾) = 𝜇{𝓃 ∈ ℕ: 𝜆𝒾 < ||𝓊𝒾(𝓃)|
𝑝|} 

  = 𝜇 {𝓃 ∈ ℕ: (𝜆𝒾)
1
𝑝 < |𝓊𝒾(𝓃)|} 

= 𝐷𝓊𝒾 ((𝜆𝒾)
1

𝑝). 

Therefore, 

𝒟((|𝓊|𝑘)𝑝)(𝜆) = 𝐷𝓊1 ((𝜆1)
1
𝑝) 𝑒1 + 𝐷𝓊2 ((𝜆2)

1
𝑝) 𝑒2 

 = 𝒟𝓊 ((𝜆)
1
𝑝) 

and hence 

((|𝓊|𝑘)
𝑝)∗(𝓉) = 𝑖𝑛𝑓𝔻{𝜆 ∈ 𝔻

+: 𝒟((|𝓊|𝑘)𝑝)(𝜆) ≼ 𝓉} 

= 𝑖𝑛𝑓𝔻 {𝜆 ∈ 𝔻
+: 𝒟𝓊 (𝜆

1
𝑝) ≼ 𝓉} 

= 𝑖𝑛𝑓𝔻{𝛼
𝑝 ∈ 𝔻+: 𝒟𝓊(𝛼) ≼ 𝓉} 

= 𝑖𝑛𝑓𝔻{(𝛼1𝑒1 + 𝛼2𝑒2)
𝑝 ∈ 𝔻+: 𝒟𝓊(𝛼) ≼ 𝓉} 

= 𝑖𝑛𝑓𝔻{𝛼1
𝑝𝑒1 + 𝛼2

𝑝𝑒2 ∈ 𝔻
+: 𝒟𝓊(𝛼1𝑒1 + 𝛼2𝑒2) ≼ 𝓉}. 

Now if (2.5) is used, 

((|𝓊|𝑘)
𝑝)∗(𝓉) = 𝑖𝑛𝑓{𝛼1

𝑝: 𝛼𝑝 ∈ 𝔻+  ∧  𝒟𝓊(𝛼) ≼ 𝓉}𝑒1  
+ 𝑖𝑛𝑓{𝛼2

𝑝: 𝛼𝑝 ∈ 𝔻+  ∧  𝒟𝓊(𝛼) ≼ 𝓉}𝑒2    
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= (𝑖𝑛𝑓{𝛼1: 𝛼
𝑝 ∈ 𝔻+  ∧  𝐷𝓊1(𝛼1) ≤ 𝓉1})

𝑝
𝑒1

+ (𝑖𝑛𝑓{𝛼2: 𝛼
𝑝 ∈ 𝔻+  ∧  𝐷𝓊2(𝛼2) ≤ 𝓉2})

𝑝
𝑒2 

= ((𝑖𝑛𝑓{𝛼1: 𝛼
𝑝 ∈ 𝔻+  ∧  𝐷𝓊1(𝛼1) ≤ 𝓉1})𝑒1

+ (𝑖𝑛𝑓{𝛼2: 𝛼
𝑝 ∈ 𝔻+  ∧  𝐷𝓊2(𝛼2) ≤ 𝓉2})𝑒2)

𝑝

 

= (𝑖𝑛𝑓𝔻{𝛼 = 𝛼1𝑒1 + 𝛼2𝑒2 ∈ 𝔻
+: 𝒟𝓊(𝛼1𝑒1 + 𝛼2𝑒2) ≼ 𝓉)

𝑝, 

and so 

((|𝓊|𝑘)
𝑝)∗(𝓉) = (𝓊∗)𝑝(𝓉). (2.10) 

Definition 9. For a H ∈ 𝒢 = 2ℕ , the function defined by         

χ
H
(𝓃) = {

1,𝓃 ∈ H
0,𝓃 ∉ H

, is the known characteristic function of the set 

H, therefore the function defined from ℕ to 𝔻+ as  

χ
H
𝔻(𝓃) = χ

H
(𝓃)𝑒1 + χ

H
(𝓃)𝑒2 

is called 𝔻-characteristic function of the set H. At the time, it can 

be written by  

χ
H
𝔻(𝓃) = {

1𝑒1 + 1𝑒2, 𝓃 ∈ H
0𝑒1 + 0𝑒2, 𝓃 ∉ H

= {
1, 𝓃 ∈ H
0,𝓃 ∉ H

. 

 Now let us construct the 𝔻 -distribution and 𝔻 -decreasing 

rearrangement functions of this function χ
H

. Let 𝜆 = (𝜆1𝑒1 + 𝜆2𝑒2) 

be an element in 𝔻+, we have 

 𝒟
(χH
𝔻(𝓃))

(𝜆) = 𝒟(χH(𝓃)𝑒1+χH(𝓃)𝑒2)
(𝜆1𝑒1 + 𝜆2𝑒2) 

  = 𝐷χH(𝓃)
(𝜆1)𝑒1 + 𝐷χH(𝓃)

(𝜆2)𝑒2.  

Using the definitions of the distribution functions 𝐷𝑢𝑖(𝜆𝑖)  with      

 𝑖 = 1,2 we have 

𝐷χH(𝓃)
(𝜆𝑖) = {

𝜇(𝐻)  , 0 ≤ 𝜆𝑖 < 1
0      , 𝜆𝑖 ≥ 1    

. 

Finally,  
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𝒟
(χH
𝔻(𝓃))

(𝜆) =

{
 
 

 
 𝜇(𝐻)𝑒1 + 𝜇(𝐻)𝑒2   , 0 ≤ 𝜆1 < 1 ∧  0 ≤ 𝜆2 < 1

𝜇(𝐻)𝑒1 + 0𝑒2   , 0 ≤ 𝜆1 < 1 ∧ 𝜆2 ≥ 1

0𝑒1 + 𝜇(𝐻)𝑒2  , 𝜆1 ≥ 1 ∧  0 ≤ 𝜆2 < 1
0𝑒1 + 0𝑒2    , 𝜆1 ≥ 1 ∧ 𝜆2 ≥ 1 

 

 𝒟
(χH
𝔻(𝓃))

(𝜆) =

{
 
 

 
 𝜇(𝐻)      ,    0 ≤ 𝜆1 < 1 ∧  0 ≤ 𝜆2 < 1   

  𝜇(𝐻)𝑒1  ,     0 ≤ 𝜆1 < 1 ∧ 𝜆2 ≥ 1            

 𝜇(𝐻)𝑒2    ,     𝜆1 ≥ 1 ∧  0 ≤ 𝜆2 < 1            
0        ,     𝜆1 ≥ 1 ∧ 𝜆2 ≥ 1            

 

 (2.11) 

is obtained. 

 Now, if the 𝔻 -decreasing rearrangement function of the 𝔻 -

characteristic function χ
H
𝔻 is written according to (2.11), it is clearly 

seen that 

(χ
H
𝔻)

∗
(𝑡) = 𝑖𝑛𝑓𝔻  {𝜆 ∈ 𝔻+: 𝒟

(χH
𝔻(𝓃))

(𝜆) ≼ 𝓉} 

  = 𝑖𝑛𝑓𝔻  {𝜆1𝑒1 + 𝜆2𝑒2 ∈ 𝔻
+: 𝒟

(χH
𝔻(𝓃))

(𝜆) ≼ 𝓉1𝑒1 + 𝓉2𝑒2}  

= 𝑖𝑛𝑓  {𝜆1 ≥ 0:  𝐷χH(𝓃)
(𝜆1) ≤ 𝓉1} 𝑒1

+ 𝑖𝑛𝑓  {𝜆2 ≥ 0:  𝐷χH(𝓃)
(𝜆2) ≤ 𝓉2} 𝑒2  

= (χ
H
)
∗
(𝓉1)𝑒1 + (χH)

∗
(𝓉2)𝑒2 

and so 

(χ
H
𝔻)

∗
(𝑡1𝑒1 + 𝑡2𝑒2) =

{
 
 

 
 1𝑒1 + 1𝑒2     ,       𝓉1 < 𝜇(𝐻) ∧ 𝓉2 < 𝜇(𝐻) 

1𝑒1 + 0𝑒2     ,      𝓉1 < 𝜇(𝐻) ∧ 𝓉2 ≥ 𝜇(𝐻) 

0𝑒1 + 1𝑒2      ,     𝓉1 ≥ 𝜇(𝐻) ∧ 𝓉2 < 𝜇(𝐻) 

0𝑒1 + 0𝑒2      ,      𝓉1 ≥ 𝜇(𝐻) ∧ 𝓉2 ≥ 𝜇(𝐻) 
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=

{
 
 

 
 1   ,   𝓉1 < 𝜇(𝐻) ∧ 𝓉2 < 𝜇(𝐻) 

𝑒1  , 𝓉1 < 𝜇(𝐻) ∧ 𝓉2 ≥ 𝜇(𝐻) 

𝑒2  , 𝓉1 ≥ 𝜇(𝐻) ∧ 𝓉2 < 𝜇(𝐻) 

0   ,   𝓉1 ≥ 𝜇(𝐻) ∧ 𝓉2 ≥ 𝜇(𝐻)  

, 

also 

(χ
H
𝔻)

∗
(𝓉) = χ[1, 𝜇(H))(𝓉1)𝑒1 + χ[1, 𝜇(H))(𝓉2)𝑒2. (2.12) 

Theorem 3. Let 𝐻 ∈ 𝒢 = 2ℕ and 𝓊 = (𝓊(𝓃)) is a sequence in 

𝒲𝔹ℂ. For 𝓉 ∈ 𝔻+, 

(𝓊 ⋅ χ
𝐻
)
∗
(𝓉) ≼ 𝓊∗(𝓉). 

Proof. Since |𝓊 ⋅ χ
𝐻
|
𝑘
≼ |𝓊|𝑘, by Theorem 1.(d), we have  

(𝓊 ⋅ χ
𝐻
)
∗
(𝓉) ≼ 𝓊∗(𝓉). 

Lemma 2. Let (𝐺, 𝒢, 𝜇) is be a measurement space further ℊ and 𝒽 

are be two measurable functions. Then the inequalities 

(ℊ + 𝒽)∗(𝛼 + 𝛽) ≤ ℊ∗(𝛼) + 𝒽∗(𝛽) 

and 

(ℊ ∙ 𝒽)∗(𝛼 + 𝛽) ≤ ℊ∗(𝛼) ∙ 𝒽∗(𝛽) 

hold for all 𝛼, 𝛽 ≥ 0 (Castillo and Rafeiro, 2015). 

Theorem 4. Let (ℕ, 𝒢, 𝜇)  be a measure space and                                  

𝓊 = (𝓊(𝓃)) , 𝓋 = (𝓋(𝓃))  be two sequence in 𝒲𝔹ℂ . Then, the      

𝔻-inequalities 

(𝓊 + 𝓋)∗(𝜆 + 𝛿) ≼ 𝓊∗(𝜆) + 𝓋∗(𝛿) (2.13) 

and  

(𝓊 ⋅ 𝓋)∗(𝜆 + 𝛿) ≼ 𝓊∗(𝜆) ⋅ 𝓋∗(𝛿)  (2.14) 

hold for all 𝜆, 𝛿 ∈ 𝔻+ with 𝜆 = 𝜆1𝑒1 + 𝜆2𝑒2 and 𝛿 = 𝛿1𝑒1 + 𝛿2𝑒2. 

Proof. Since 𝓊∗(𝜆) = 𝓊1
∗(𝜆1)𝑒1 +𝓊2

∗(𝜆2)𝑒2 and                        
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𝓋∗(𝛿) = 𝓋1
∗(𝛿1)𝑒1 +𝓋2

∗(𝛿2)𝑒2 from (2.8) and also if use Lemma 

2, we have 

(𝓊 + 𝓋)∗(𝜆 + 𝛿) = ((𝓊1𝑒1 +𝓊2𝑒2) + (𝓋1𝑒1 + 𝓋2𝑒2))
∗
(𝜆 + 𝛿) 

= ((𝓊1 +𝓋1)𝑒1 + (𝓊2 + 𝓋2)𝑒2)
∗
((𝜆1 + 𝛿1)𝑒1 + (𝜆2 + 𝛿2)𝑒2) 

 = (𝓊1 +𝓋1)
∗(𝜆1 + 𝛿1)𝑒1 + (𝓊2 + 𝓋2)

∗(𝜆2 + 𝛿2)𝑒2 

 ≼ (𝓊1
∗(𝜆1) + 𝓋1

∗(𝛿1))𝑒1 + (𝓊2
∗(𝜆2) + 𝓋2

∗(𝛿2))𝑒2 

 = (𝓊1
∗(𝜆1)𝑒1 +𝓊2

∗ (𝜆2)𝑒2) + (  𝓋1
∗(𝛿1)𝑒1 +𝓋2

∗(𝛿2))𝑒2 

 = 𝓊∗(𝜆) + 𝓋∗(𝛿). 

Again, we have 

(𝓊 ⋅ 𝓋)∗(𝜆 + 𝛿) = ((𝓊1𝑒1 +𝓊2𝑒2) ⋅ (𝓋1𝑒1 +𝓋2𝑒2))
∗
(𝜆 + 𝛿) 

 = ((𝓊1 ⋅ 𝓋1)𝑒1 + (𝓊2 ⋅ 𝓋2)𝑒2)
∗
((𝜆1 + 𝛿1)𝑒1 + (𝜆2 + 𝛿2)𝑒2) 

   = (𝓊1 ⋅ 𝓋1)
∗(𝜆1 + 𝛿1)𝑒1 + (𝓊2 ⋅ 𝓋2)

∗(𝜆2 + 𝛿2)𝑒2 

   ≼ (𝓊1
∗(𝜆1) ⋅ 𝓋1

∗(𝛿1))𝑒1 + (𝓊2
∗(𝜆2) ⋅ 𝓋2

∗(𝛿2))𝑒2 

= (𝓊1
∗(𝜆1)𝑒1 +𝓊2

∗(𝜆2)𝑒2) ⋅ (  𝓋1
∗(𝛿1)𝑒1 +𝓋2

∗(𝛿2))𝑒2 

= 𝓊∗(𝜆) ⋅ 𝓋∗(𝛿). 

If 𝜆 = 𝛿 =
𝛼

2
 is chosen in (2.13) and (2.14), then  

(𝓊 + 𝓋)∗(𝛼) ≼ 𝓊∗ (
𝛼

2
) + 𝓋∗ (

𝛼

2
) 

and  

(𝓊 ⋅ 𝓋)∗(𝛼) ≼ 𝓊∗ (
𝛼

2
) ⋅ 𝓋∗ (

𝛼

2
) 

is obtained. 

Definition 10. 𝓊 = (𝓊(𝓃)) be a sequence in 𝒲𝔹ℂ . The function 

defined by  
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𝓊∗∗(𝓃) =
1

𝓃
∑𝓊∗(𝓍)

𝓃

𝓍=1

 

is called the 𝔻-average function of 𝓊∗. 

Theorem 5. Let 𝓊 = (𝓊(𝓃))  be a sequence in 𝒲𝔹ℂ . The                  

𝔻-average function of 𝓊∗ has the following features: 

a) For every 𝓃 =1,2,3…, 𝓊∗(𝓃) ≼ 𝓊∗∗(𝓃). 

b) 𝓊∗∗ is 𝔻-decreasing. 

c) If 𝓃 is an even natural number, 

(𝓊 + 𝓋)∗∗(𝓃) ≼ 𝓊∗∗(𝓃 2⁄ ) + 𝓋∗∗(𝓃 2⁄ ). 

d) If 𝓃  is an odd natural number and ⟦. ⟧  is an greatest 

integer function, then 

(𝓊 + 𝓋)∗∗(𝓃) ≼
𝓃 + 1

𝓃
(𝓊∗∗(⟦𝓃 2⁄ ⟧ + 1) + 𝓋∗∗(⟦𝓃 2⁄ ⟧ + 1)). 

Proof. a) Since 𝓊∗ a 𝔻-decreasing function and 𝓃 = 𝓃𝑒1 + 𝓃𝑒2 

for all 𝓃 ≥ 1, 

𝓊∗∗(𝓃) =
1

𝓃
∑𝓊∗(𝓍) =

1

𝓃
((𝓊∗(1) + 𝓊∗(2) + ⋯+𝓊∗(𝓃)))

𝓃

𝓍=1

 

≽
1

𝓃
(𝓃 ⋅ 𝓊∗(𝓃)) = 𝓊∗(𝓃) 

is obtained. 

b) For 𝓃 ≥ 1, we have 

𝓊∗∗(𝓃 + 1) =
1

𝓃 + 1
∑𝓊∗(𝓍)

𝓃+1

𝓍=1

 

=
1

𝓃 + 1
(∑𝓊∗(𝓍) + 𝓊∗(𝓃 + 1)

𝓃

𝓍=1

) 
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=
1

𝓃 + 1
∑𝓊∗(𝓍)

𝓃

𝓍=1

+
1

𝓃 + 1
𝓊∗(𝓃 + 1).     (2.15) 

Since 𝓊∗(𝓃 + 1) ≼ 𝓊∗(𝒾) for 1 ≤ 𝒾 ≤ 𝓃, there exist 

𝓊∗(𝓃 + 1) ≼
1

𝓃
(𝓊∗(1) + 𝓊∗(2) + ⋯+𝓊∗(𝓃)). 

If this inequality is written in (2.15), we have 

𝓊∗∗(𝓃 + 1) ≼
1

𝓃 + 1
∑𝓊∗(𝓍)

𝓃

𝓍=1

+
1

𝓃(𝓃 + 1)
(𝓊∗(1) + ⋯+ 𝓊∗(𝓃)) = 𝓊∗∗(𝓃). 

As a result, 𝓊∗∗ is 𝔻-decreasing. 

c) If the 𝔻-average function definition and (2.13) are used,  

(𝓊 + 𝓋)∗∗(𝓃) =
1

𝓃
∑(𝓊 +𝓋)∗(𝓍)

𝓃

𝓍=1

 

 ≼
1

𝓃
∑(𝓊∗ (

𝓍

2
) + 𝓋∗ (

𝓍

2
))

𝓃

𝓍=1

 

 =
1

𝓃
{∑𝓊∗ (

𝓍

2
)

𝓃

𝓍=1

+∑𝓋∗ (
𝓍

2
)

𝓃

𝓍=1

}. 

Since (𝓃 − 1) ≤ 𝓉𝒾 ≺ 𝓃, we have 𝓊𝒾
∗(𝓉𝒾) = 𝓊𝒾

∗(𝓃) with 𝒾 = 1, 2 

(Castillo & Rafeiro, 2015).  

For (𝓃 − 1) ≼ 𝓉 ≺ 𝓃, we have  

𝓊∗(𝓉) = 𝓊1
∗(𝓉1)𝑒1 +𝓊2

∗(𝓉2)𝑒2 = 𝓊1
∗(𝓃)𝑒1 +𝓊2

∗(𝓃)𝑒2 = 𝓊
∗(𝓃). 

Therefore,  

∑𝓊∗ (
𝓍

2
)

𝓃

𝓍=1
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= 𝓊∗ (
1

2
) + 𝓊∗ (

2

2
) + 𝓊∗ (

3

2
) + 𝓊∗ (

4

2
) +⋯+𝓊∗ (

𝓃

2
) 

 = 𝓊∗(1) + 𝓊∗(1) + 𝓊∗(2) + 𝓊∗(2) + ⋯+ 𝓊∗ (
𝓃

2
)  

 = 2 {𝓊∗(1) + 𝓊∗(2) + ⋯+𝓊∗ (
𝓃

2
)} 

 = 2∑𝓊∗(𝓍)

𝓃 2⁄

𝓍=1

 

similarly, 

∑𝓋∗ (
𝓍

2
) = 2∑𝓋∗(𝓍)

𝓃 2⁄

𝓍=1

.

𝓃

𝓍=1

 

As a result, 

 (𝓊 + 𝓋)∗∗(𝓃) ≼
1

𝓃
{2∑𝓊∗(𝓍)

𝓃 2⁄

𝓍=1

+ 2∑𝓋∗(𝓍)

𝓃 2⁄

𝓍=1

} 

 =
1

𝓃 2⁄
{∑𝓊∗(𝓍)

𝓃 2⁄

𝓍=1

+∑𝓋∗(𝓍)

𝓃 2⁄

𝓍=1

} 

 = 𝓊∗∗(𝓃 2⁄ ) + 𝓋∗∗(𝓃 2⁄ ). 

d) Assume that 𝓃 is the odd natural number. When using the 

proof method in c, 

(𝓊 + 𝓋)∗∗(𝓃) =
1

𝓃
∑(𝓊 +𝓋)∗(𝓍)

𝓃

𝓍=1

  

 ≼
1

𝓃
∑(𝓊∗ (

𝓍

2
) + 𝓋∗ (

𝓍

2
))

𝓃

𝓍=1
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 =
1

𝓃
∑(𝓊∗ (

𝓍

2
))

𝓃

𝓍=1

+
1

𝓃
∑(𝓋∗ (

𝓍

2
))

𝓃

𝓍=1

 

=
1

𝓃
{𝓊∗ (

1

2
) + 𝓊∗ (

2

2
) + 𝓊∗ (

3

2
) +⋯+𝓊∗ (

𝓃 − 1

2
) + 𝓊∗ (

𝓃

2
)} 

+
1

𝓃
{𝓋∗ (

1

2
) + 𝓋∗ (

2

2
) + 𝓋∗ (

3

2
) +⋯+ 𝓋∗ (

𝓃 − 1

2
) + 𝓋∗ (

𝓃

2
)} 

≼
1

𝓃
{𝓊∗ (

1

2
) + 𝓊∗ (

2

2
) +⋯+𝓊∗ (

𝓃 − 1

2
) + 𝓊∗ (

𝓃

2
) + 𝓊∗ (

𝓃

2
)} 

+
1

𝓃
{𝓋∗ (

1

2
) + 𝓋∗ (

2

2
) +⋯+𝓋∗ (

𝓃 − 1

2
) + 𝓋∗ (

𝓃

2
) + 𝓋∗ (

𝓃

2
)} 

=
2

𝓃
∑ 𝓊∗(𝓍) +

2

𝓃
∑ 𝓋∗(𝓍)

⟦𝓃 2⁄ ⟧+1

𝓍=1

⟦𝓃 2⁄ ⟧+1

𝓍=1

  

=
2

𝓃

{⟦𝓃 2⁄ ⟧ + 1}

{⟦𝓃 2⁄ ⟧ + 1}
∑ (𝓊∗(𝓍) + 𝓋∗(𝓍))

⟦𝓃 2⁄ ⟧+1

𝓍=1

 

=
2 {⟦

𝓃 + 1
2 −

1
2
⟧ + 1}

𝓃
{

1

(⟦𝓃 2⁄ ⟧ + 1)
∑ 𝓊∗(𝓍)

⟦𝓃 2⁄ ⟧+1

𝑘=1

 

+
1

(⟦𝓃 2⁄ ⟧ + 1)
∑ 𝓋∗(𝓍)

⟦𝓃 2⁄ ⟧+1

𝓍=1

} 

=
2 {(

𝓃 + 1
2 − 1) + 1}

𝓃
(𝓊∗∗(⟦𝓃 2⁄ ⟧ + 1) + 𝓋∗∗(⟦𝓃 2⁄ ⟧ + 1)) 

=
𝓃 + 1

𝓃
(𝓊∗∗(⟦𝓃 2⁄ ⟧ + 1) + 𝓋∗∗(⟦𝓃 2⁄ ⟧ + 1)) 

is obtained. 
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Introduction 

One of the most comprehensive and active theories of modern 

differential geometry is Riemannian manifolds. Therefore, such 

manifolds have been examined and studied frequently by several 

mathematicians in literature in recent years. Over time, different 

structures have been defined on Riemannian manifolds and thanks 
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to these structures, some special different manifolds have been 

introduced to the literature. One of these manifolds is the almost 

paracontact manifolds and their subclasses defined by Sato (Sato, 

1976). Since then, many authors have made significant contributions 

to these manifolds. 

As a special subclass of almost paracontact manifolds, para-

Sasakian manifolds represent a captivating and significant area of 

study in the realm of differential geometry and mathematics. Such 

manifolds are a natural extension of Sasakian manifolds, and they 

possess remarkable geometric properties that have far-reaching 

implications across various mathematical disciplines. 

Para-Sasakian manifolds are closely related to the broader 

family of Sasakian manifolds. A Sasakian manifold is a Riemannian 

manifold equipped with a special contact structure known as the 

Reeb foliation. What distinguishes para-Sasakian manifolds is their 

compatibility with a pseudo-Riemannian metric alongside the Reeb 

foliation, resulting in a perfect blend of Riemannian and Lorentzian 

geometries. This combination of geometric structures provides a 

unique setting for the exploration of mathematical concepts. 

On the other hand, using the Riemannian metric on manifolds 

plays an important role in examining and characterizing manifolds 
and their submanifolds. While examining Riemannian manifolds and 

their submanifolds, curvatures are generally used, classifications are 

made with the help of these curvatures, and characterization 

theorems and results are given depending on the curvatures. While 

investigating Riemannian manifolds and their submanifolds, one of 

the new methods is to make use of certain curvature tensor 

conditions on the manifolds. There are many interesting paper about 

various type of manifolds satisfying curvature conditions. 

In their work (Adati & Matsumoto, 1977), T. Adati and K. 

Matsumoto defined the concepts of para-Sasakian and special para-

Sasakian manifolds, which are regarded as specific instances of 

almost paracontact manifolds initially established by I. Sato (Sato, 

1976). Within the same study, the authors conducted an investigation 
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into conformally symmetric para-Sasakian manifolds, establishing 

the result that a para-Sasakian manifold of dimension 𝑛 (where 𝑛 >
 3) that is conformally symmetric is both conformally flat and special 

para-Sasakian. Subsequently, in their study (De & Guha, 1992), the 

authors examined para-Sasakian manifolds satisfying the condition 

Weyl-semisymmetric, and their findings demonstrated that a Weyl-

semisymmetric manifold of dimension 𝑛 that is also para-Sasakian 

exhibits conformal flatness. This research is devoted to achieving 

classifications of para-Sasakian manifolds with Weyl-

pseudosymmetric condition, which represent an expanded class of 

Weyl-semisymmetric manifolds that have para-Sasakian structure, 

as well as additional characterizations of para-Sasakian manifolds 

that satisfy the condition curvature 𝐶 ·  𝑆 =  0. 

In his research, Özgür (Özgür, 2005) explored Weyl-

pseudosymmetric manifolds that have para-Sasakian structure. Also, 

in same research he investigate para-Sasakian manifolds under the 

curvature condition 𝐶 ·  𝑆 =  0. Para-Sasakian manifolds have been 

the subject of study by various authors, including Deshmukh and 

Ahmed (Desmukh & Ahmed, 1980), De et al. (De & et al., 2008), 

Matsumoto, Ianus, and Mihai (Matsumoto, Ianus & Mihai, 1986), 

Sharfuddin, Deshmukh, and Husain (Sharfuddin, Deshmukh & 

Husain, 1980), De et al. (De, Han & Mandal, 2017), Adati and 

Miyazawa (Adati & Miyazawa, 1979), Acet et al. (Acet, Kılıç & 

Yüksel Perktaş, 2012), Ozgür and Tripathi (Özgür & Tripathi, 2007) 

among several others.  

Motivated and inspired by the above studies, in this work we 

deal with 𝑄 curvature tensor on para-Sasakian manifolds, which is a 

fruitful topic of paracontact manifolds, and we obtain some 

significant characterization theorems depending on this tensor. Our 

work is structured as follows. First section is dedicated to the 

introduction, which contains a background of manifolds. In the next 

section, in preliminaries, we give some requirement notions and 

formulas that we will make use of in the proof of our main results. 

The final section, as main results, we give some characteriztions on 
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para-Sasakian manifolds which are equipped with the curvature 

tensor 𝑄. 

Preliminaries 

In this section, we collect some necessary notions and 

formulas related to almost paracontact metric manifolds and para-

Sasakian manifolds which will be used later in the next section.  

Let 𝑀  be a contact manifold of dimension 2𝑛 + 1  together 

with a contact form  such that . It is widely 

recognized that a contact manifold admits a special vector field 𝜉 , 

which is said to be characteristic vector field of the contact manifold, 

satisfying 𝜂(𝜉) = 1  and 𝑑𝜂(𝜉, ℸ1) = 0  for all ℸ1  in Γ(𝑇𝑀) . 

Furthermore, 𝑀  possesses a Riemannian metric  and a 

(1,1) − type tensor field 𝜑  satisfying 𝜑2 = 𝐼 − 𝜂⨂𝜉,  𝑔(ℸ1, 𝜉) =
𝜂(ℸ1),  and 𝑔(ℸ1, 𝜑ℸ2) = 𝑑𝜂(ℸ1, ℸ2) . In this context, we refer to 

(𝜑, 𝜉, 𝜂, 𝑔)  as a contact metric structure. A manifold which is 

endowed with a such structure is termed Sasakian if  

(∇ℸ1𝜑)ℸ2 = 𝑔(ℸ1, ℸ2)𝜉 − 𝜂(ℸ2)ℸ1, 

in which case 

∇ℸ1𝜉 = −𝜑ℸ1  

and 

  𝑅(ℸ1, ℸ2)𝜉 = 𝜂(ℸ2)ℸ1 − 𝜂(ℸ1)ℸ2 

for all vector fields ℸ1, ℸ2𝜖Γ(𝑇𝑀). Here, ∇  denotes the connection 

of the manifold, which is called the Levi-Civita connection. 

An almost paracontact manifold 𝑀 having dimension 2𝑛 + 1 is 

a differentiable manifold consisting of  the structure (𝜑, 𝜉, 𝜂, 𝑔) , 

where 𝜑 represents a (1,1) −tensor field, 𝜉 is a vector field, 𝜂 is a 

1 −form and 𝑔 is the Riemannian metric on 𝑀 . This structure is 

characterized by the following conditions (Sato, 1976) 

𝜑2ℸ1  =  ℸ1  −  𝜂(ℸ1)𝜉,                                                                   …(1) 
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𝜂(𝜉) = 1,                                                                                                 …(2) 

 𝜑𝜉 =  0,                                                                                                               …(3) 

  𝜂𝜑 =  0,                                                                                                              …(4) 

and  

𝑔(𝜉, ℸ1)  =  𝜂(ℸ1),                                                                                            …(5) 

  𝑔(𝜑ℸ1, 𝜑ℸ2 )  =  𝑔(ℸ1, ℸ2 )  −  𝜂(ℸ1)𝜂(ℸ2)                                      …(6) 

for all vector fields ℸ1, ℸ2𝜖Γ(𝑇𝑀), where Γ(𝑇𝑀) denotes the set of 

all vector field on the manifold 𝑀.  

It is to be noted that as a direct consequence of the equations 

(1), (3), (4) and (6) we also have 

𝑔(𝜑ℸ1, ℸ2) + 𝑔(ℸ1, 𝜑ℸ2) = 0.                                                    …(7) 

If the structure (𝜑, 𝜉, 𝜂, 𝑔) on the manifold 𝑀 satisfies 

𝑑𝜂 =  0,                                                                                     …(8) 

𝛻ℸ1𝜉 =  𝜑ℸ1,                                                                             …(9) 

(𝛻ℸ1  𝜑)ℸ2  =  −𝑔(ℸ1, ℸ2)𝜉 −  𝜂(ℸ2)ℸ1  +  2𝜂(ℸ1)𝜂(ℸ2)𝜉,      …(10) 

then M  is said to define a para-Sasakian manifold, or shortly, a P-

Sasakian manifold (Adati & Matsumuto, 1977). We denote a para-

Sasakian manifold by (𝑀, 𝜑, 𝜉, 𝜂, 𝑔).  

Also we want to remark that in a para-Sasakian manifold 

(𝑀, 𝜑, 𝜉, 𝜂, 𝑔) the following properties are satisfied (Zamkovoy, 

2009): 

𝑅𝑖𝑐 𝜉 = −2𝑛.                                                                           …(11) 

𝑆(ℸ1, 𝜉) = −2𝑛𝜂(ℸ1),                                                              …(12) 

𝑅(ℸ1, ℸ2)𝜉 = 𝜂(ℸ1)ℸ2 − 𝜂(ℸ2)ℸ1,                                            …(13) 

𝑅(𝜉, ℸ1)ℸ2 = 𝜂(ℸ2)ℸ1 − 𝑔(ℸ1, ℸ2)𝜉                                         …(14) 

         𝑅(𝜉, ℸ1)𝜉 = ℸ1 − 𝜂(ℸ1)𝜉,                                                …(15) 
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𝑔 (𝑅(ℸ1, ℸ2)ℸ3, 𝜉) = 𝜂(𝑅(ℸ1, ℸ2)ℸ3) = 𝑔 (ℸ1, ℸ3)𝜂(ℸ2) −
𝑔 (ℸ2, ℸ3)𝜂(ℸ1)               …        (16) 

for all vector fields ℸ1, ℸ2, ℸ3𝜖Γ(𝑇𝑀). Here, 𝑅 is the Riemannian 

curvature tensor of the manifold, which is given by the formula 

𝑅(ℸ1, ℸ2)ℸ3 = ∇ℸ1∇ℸ2ℸ3 − ∇ℸ2∇ℸ1ℸ3 − ∇[ℸ1,ℸ2]ℸ3 

and 𝑆 stands for the Ricci tensor defined by 𝑆(ℸ1, ℸ2) =
𝑔(𝑅𝑖𝑐ℸ1, ℸ2), where  𝑅𝑖𝑐 is the Ricci operator.  

Additionally if the Ricci tensor 𝑆 of a para-Sasakian manifold 

(𝑀, 𝜑, 𝜉, 𝜂, 𝑔) satisfies  

𝑆(ℸ1, ℸ2) = 𝜌𝑔(ℸ1, ℸ2) + 𝛿𝜂(ℸ1)𝜂(ℸ2) 

then the manifold is named as 𝜂 −Einstein, where 𝜌  and 𝛿  are 

smooth functions on the manifold 𝑀 . An  𝜂 −Einstein manifold 

becomes Einstein if 𝛿 =0 (Adati & Miyazawa, 1979).  

On the other hand Mantica and Suh defined a new curvature 

tensor, which is named as 𝑄 curvature tensor, given by (Mantica & 

Suh, 2013) 

𝑄(ℸ1, ℸ2)ℸ3 = 𝑅(ℸ1, ℸ2)ℸ3 −
𝜓

2𝑛
[𝑔(ℸ2, ℸ3)ℸ1 − 𝑔(ℸ1, ℸ3)ℸ2].      (17)  

Here, 𝜓 denotes an arbitrary scalar function. When 𝜓 =
𝑟

(2𝑛+1)
, then 

this curvature tensor reduces to concircular curvature tensor. 

Also it follows from the equations (13), (14), (15) and (17) one 

immediately has 

𝑄(ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)𝑅(ℸ1, ℸ2)𝜉                                                        …(18) 

𝑄(𝜉, ℸ2)ℸ3 = (1 +
𝜓

2𝑛
)𝑅(𝜉, ℸ2)ℸ3                                                        …(19) 

𝑄(𝜉, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)𝑅(𝜉, ℸ2)𝜉                                                            …(20) 

for any vector fields ℸ1 and ℸ2 tangent to 𝑀. The curvature tensor 𝑄 

has been studied by various researchers, including Yadav and Yıldız 
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(Yadav & Yıldız, 2022), De and Majhi (De and Majhi, 2019), 

Yıldırım (Yıldırım, 2022), Yılmaz (Bağdatli Yilmaz, 2020) as well 

as numerous other scholars.  

Main Results 

In this section we give our main results that are obtained in this 

work.  We obtain that under some curvature conditions a para-

Sasakian manifold (𝑀, 𝜑, 𝜉, 𝜂, 𝑔)  becomes a constant negative 

curvature manifold. 

The first result of this section is in the following. 

Theorem 1: Let (𝑀,𝜑, 𝜉, 𝜂, 𝑔)  be a para-Sasakian manifold 

admitting curvature condition 𝑄(𝜉, ℸ4). 𝑄 = 0. Then, we have that 

either 𝜓 = −2𝑛 or the manifold 𝑀 has constant negative curvature 

−1. 

Proof: Let us suppose that the structure (𝜑, 𝜉, 𝜂, 𝑔) of the manifold 

𝑀 satisfies the condition 𝑄(𝜉, ℸ4).𝑄 = 0, that is 

(𝑄(𝜉, ℸ4)𝑄). (ℸ1, ℸ2)ℸ5 = 0 

for all vector fields ℸ1, ℸ2, ℸ4, ℸ5𝜖Γ(𝑇𝑀). This means that  

𝑄(𝜉, ℸ4). 𝑄(ℸ1, ℸ2)ℸ5 − 𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)ℸ5  

𝑄(ℸ1, 𝑄(𝜉, ℸ4)ℸ2)ℸ5 − 𝑄(ℸ1, ℸ2)𝑄(𝜉, ℸ4)ℸ5 = 0.                 (21)      

Setting ℸ5 = 𝜉 in (21), one can write 

𝑄(𝜉, ℸ4)𝑄(ℸ1, ℸ2)𝜉 − 𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)𝜉  

 𝑄(ℸ1, 𝑄(𝜉, ℸ4)ℸ2)𝜉 − 𝑄(ℸ1, ℸ2)𝑄(𝜉, ℸ4)𝜉 = 0.               … (22)      

For the first term of (22), using (18) and (19), we get 

𝑄(𝜉, ℸ4)𝑄(ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2

𝑅(𝜉, ℸ4)𝑅(ℸ1, ℸ2)𝜉             (23)      

Also, making use of (19) in (23) we find that 
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𝑄(𝜉, ℸ4)𝑄(ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2
(𝜂(ℸ2)𝑔(ℸ4, ℸ1)𝜉 −

𝜂(ℸ1)𝑔(ℸ4, ℸ2)𝜉).                                                                                   (24)     

For the second term of (22), by means of (19) we achieve 

𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2

𝑅(𝑅(𝜉, ℸ4)ℸ1, ℸ2)𝜉, 

which together with the equations (13) and (15) takes the form 

𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2

[
𝜂(ℸ1)𝜂(ℸ4)ℸ2 − 𝜂(ℸ1)𝜂(ℸ2)ℸ4
+𝑔(ℸ4, ℸ1)𝜂(ℸ2)𝜉 − 𝑔(ℸ4, ℸ1)ℸ2

] 

(25) 

For the third term of the equation (22), with the help of (18) and (19), 

we arrive at 

𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2

𝑅(ℸ1, 𝑅(𝜉, ℸ4)ℸ2)𝜉.             …(26) 

It follow from (13) and (15), the equation (25) becomes 

𝑄(𝑄(𝜉, ℸ4)ℸ1, ℸ2)𝜉 = (1 +
𝜓

2𝑛
)
2

[
𝜂(ℸ2)𝜂(ℸ1)ℸ4 − 𝜂(ℸ2)𝜂(ℸ4)ℸ1
+𝑔(ℸ4, ℸ2)ℸ1 − 𝑔(ℸ4, ℸ2)𝜂(ℸ1)𝜉

]. 

(27) 

For the fourth term of the equation (22), using (20) we write 

𝑄(ℸ1, ℸ2)𝑄(𝜉, ℸ4)𝜉 = (1 +
𝜓

2𝑛
)𝑄(ℸ1, ℸ2)𝑅(𝜉, ℸ4)𝜉              …(28) 

In wiew of (15), we provide  

𝑄(ℸ1, ℸ2)𝑄(𝜉, ℸ4)𝜉 = (1 +
𝜓

2𝑛
)𝑄(ℸ1, ℸ2)(ℸ4 − 𝜂(ℸ4)𝜉)      … (29)       

Using (18) in (29), we obtain that  

𝑄(ℸ1, ℸ2)𝑄(𝜉, ℸ4)𝜉 = (1 +
𝜓

2𝑛
)𝑄(ℸ1, ℸ2)ℸ4   

(1 +
𝜓

2𝑛
)
2

[𝜂(ℸ4)𝜂(ℸ1)ℸ2 − 𝜂(ℸ4)𝜂(ℸ2)ℸ1].                            …(30)  
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Now, substituting the equations (24), (25), (27) and (30) into (22), 

we have 

(1 +
𝜓

2𝑛
) [𝑅(ℸ1, ℸ2)ℸ4 + 𝑔(ℸ2, ℸ4)ℸ1 − 𝑔(ℸ1, ℸ4)ℸ2] = 0, 

which implies that either 

𝜓

2𝑛
+ 1 = 0 

or   

𝑅(ℸ1, ℸ2)ℸ4 = −(𝑔(ℸ2, ℸ4)ℸ1 − 𝑔(ℸ1, ℸ4)ℸ2). 

This result completes the proof. 

Next, we have another important result. 

Theorem 2: Let (𝑀,𝜑, 𝜉, 𝜂, 𝑔)  be a para-Sasakian manifold 

admitting curvature condition 𝑄(ℸ1, ℸ2). 𝑅𝑖𝑐 = 0.  Then, we have 

that either 𝜓 = −2𝑛 or the manifold M is an Einstein manifold with 

the scalar curvature 𝑟 = −2𝑛(2𝑛 + 1). 

Proof: Let us suppose that the structure (𝜑, 𝜉, 𝜂, 𝑔) of the manifold 

𝑀 satisfies the condition 𝑄(ℸ1, ℸ2). 𝑅𝑖𝑐 = 0, namely 

(𝑄(ℸ1, ℸ4). 𝑅𝑖𝑐)ℸ3 = 0 

and hence   

𝑄(ℸ1, ℸ2). 𝑅𝑖𝑐 ℸ3 − 𝑅𝑖𝑐 (𝑄(ℸ1, ℸ2)ℸ3) = 0                             …(31) 

for all vector fields ℸ1, ℸ2, ℸ3𝜖Γ(𝑇𝑀). If we take ℸ1 = 𝜉 in (31) and 

also benefit from (19), we obtain  

(1 +
𝜓

2𝑛
) [𝑅(𝜉, ℸ2)𝑅𝑖𝑐 ℸ3 − 𝑅𝑖𝑐 (𝑅(𝜉, ℸ2)ℸ3)] = 0, 

which together with (14) gives 

(1 +
𝜓

2𝑛
) [𝜂(𝑅𝑖𝑐 ℸ3)ℸ2 − 𝑔(𝑅𝑖𝑐 ℸ3, ℸ2)𝜉 − 𝑅𝑖𝑐 (𝜂(ℸ3)ℸ2 −

𝑔(ℸ2, ℸ3)𝜉)] = 0.           …(32) 
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Due to the equations (11) and (12), the equation (32) reduces to  

(1 +
𝜓

2𝑛
) [−2𝑛𝜂(ℸ3)ℸ2 − 𝑆(ℸ2, ℸ3)𝜉 − 𝜂(ℸ3)𝑅𝑖𝑐 ℸ2 −

2𝑛𝑔(ℸ2, ℸ3)𝜉] = 0.               …(33) 

Taking inner product of (33) with 𝜉 yields 

(1 +
𝜓

2𝑛
) [−2𝑛𝑔(ℸ2, ℸ3) − 𝑆(ℸ2, ℸ3)] = 0. 

Thus, we have that either 𝜓 = −2𝑛  or 𝑆(ℸ2, ℸ3) = −2𝑛𝑔(ℸ2, ℸ3). 
Taking the trace of the ricci tensor, we obtain 𝑟 = −2𝑛(2𝑛 + 1). 
Therefore, we get the requested result. 

The next result provides a important characterization regarding 

para-Sasakian manifolds.  

Theorem 3: Let (𝑀,𝜑, 𝜉, 𝜂, 𝑔)  be a para-Sasakian manifold 

admitting curvature condition 𝑄(ℸ1, ℸ2). 𝑆 = 0. Then, we have that 

either 𝜓 = −2𝑛 or the manifold is an Einstein manifold.  

Proof: Under our hypothesis, we have 

(𝑄(ℸ1, ℸ2). 𝑆)(ℸ3, ℸ5) = 0 

for all vector fields ℸ1, ℸ2, ℸ3, ℸ5𝜖Γ(𝑇𝑀).  This is equivalent to  

𝑆(𝑄(ℸ1, ℸ2)ℸ3, ℸ5) + 𝑆(ℸ3, 𝑄(ℸ1, ℸ2)ℸ5) = 0.                         …(34) 

Putting ℸ1 = 𝜉 in (34) and from (19) we get 

(1 +
𝜓

2𝑛
) (𝑆(𝑅(𝜉, ℸ2)ℸ3, ℸ5) + 𝑆(ℸ3, 𝑅(𝜉, ℸ2)ℸ5) = 0.          …(35) 

Implementing (14) in (35), we find that  

(1 +
𝜓

2𝑛
) [
 𝜂(ℸ3)𝑆(ℸ2, ℸ5) + 2𝑛𝑔(ℸ2, ℸ3)𝜂(ℸ5) + 𝜂(ℸ5)𝑆(ℸ2, ℸ3)

+2𝑛𝑔(ℸ2, ℸ5)𝜂(ℸ3)
]                             

…(36) 

Moreover setting ℸ3 = 𝜉 in (36) provides  

(1 +
𝜓

2𝑛
) [𝑆(ℸ2, ℸ5) + 2𝑛𝑔(ℸ2, ℸ5)] = 0, 
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where we have used the equations (5) and (12). Therefore we have 

the desired result. The proof is completed. 

Theorem 4: Let (𝑀,𝜑, 𝜉, 𝜂, 𝑔)  be a para-Sasakian manifold 

admitting curvature condition 𝑄. 𝜑 = 0.  Then we have that 𝜓 =
−2𝑛. 

Proof: Let us consider that the structure (𝜑, 𝜉, 𝜂, 𝑔) of the manifold 

𝑀 satisfies the curvature condition 𝑄.𝜑 = 0, that is 

(𝑄(ℸ1, ℸ2). 𝜑)ℸ3 = 0, 

which is equivalent to 

𝑄(ℸ1, ℸ2). 𝜑ℸ3 − 𝜑(𝑄(ℸ1, ℸ2)ℸ3) = 0     …(37) 

for all vector fields ℸ1, ℸ2, ℸ3𝜖Γ(𝑇𝑀). Putting 𝜉 instead of ℸ1 in (37), 

we write 

𝑄(𝜉, ℸ2)𝜑ℸ3 − 𝜑(𝑄(𝜉, ℸ2)ℸ3) = 0.         …(38) 

Also, making use of (19) in (38) we get 

(1 +
𝜓

2𝑛
) [𝑅(𝜉, ℸ2)𝜑ℸ3 − 𝜑(𝑅(𝜉, ℸ2)ℸ3] = 0.     …(39) 

From (2), (3), (14) and (39), we arrive at 

(1 +
𝜓

2𝑛
) [−𝑔(ℸ2, 𝜑ℸ3)𝜉 − 𝜂(ℸ3)𝜑ℸ2] = 0.    …(40) 

Replacing ℸ3  by 𝜑ℸ3  in (40) and after a straightforward 

computation, we have  

(1 +
𝜓

2𝑛
) [𝑔(𝜑ℸ2, 𝜑ℸ3)𝜉] = 0.              …(41) 

Taking inner product of (41) with 𝜉 gives  

(1 +
𝜓

2𝑛
) [𝑔(𝜑ℸ2, 𝜑ℸ3)] = 0. 

Taking the orthonormal basis of the above equation, we obtain that 

𝜓 = −2𝑛. Therefore, the proof is completed.  

The final result of our work is as follows: 
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Theorem 5: Let (𝑀,𝜑, 𝜉, 𝜂, 𝑔)  be a para-Sasakian manifold 
admitting curvature condition . Then we have that 

. 

Proof: Let us consider that the structure (𝜑, 𝜉, 𝜂, 𝑔) of the manifold 

𝑀 satisfies the curvature condition 𝜑. 𝑄 = 0, which means 

(𝜑. 𝑄)(ℸ1, ℸ2)ℸ3 

namely, 

 𝜑(𝑄(ℸ1, ℸ2)ℸ3 − 𝑄(𝜑ℸ1, ℸ2)ℸ3 − 𝑄(ℸ1, 𝜑ℸ2)ℸ3 − 𝑄(ℸ1, ℸ2)𝜑ℸ3 =
0     …(42) 

for all vector fields ℸ1, ℸ2, ℸ3𝜖Γ(𝑇𝑀). Taking  in place of ℸ3 in (42) 

and it follows from (3) that we have 

𝜑(𝑄(ℸ1, ℸ2)𝜉 − 𝑄(𝜑ℸ1, ℸ2)𝜉 − 𝑄(ℸ1, 𝜑ℸ2)𝜉 = 0.        …            (43)  

Using (13) and (18) in (43) one immediately has 

(1 +
𝜓

2𝑛
) (𝜂(ℸ1)ℸ2 − 𝜂(ℸ2)ℸ1 + 𝜂(ℸ2)𝜑ℸ1 − 𝜂(ℸ1)𝜑ℸ2) = 0.     (44) 

Taking inner product of (44) with arbitrary vector field ℸ3 gives 

(1 +
𝜓

2𝑛
) [

𝜂(ℸ1)𝑔(ℸ2, ℸ3) − 𝜂(ℸ2)𝑔(ℸ1, ℸ3)

+𝜂(ℸ2)𝑔(𝜑ℸ1, ℸ3) − 𝜂(ℸ1)𝑔(𝜑ℸ2, ℸ3)
] = 0.  …       (45) 

Setting ℸ1=ℸ3 = 𝐺𝑖 in (45) and from (2), (3) we get 

(1 +
𝜓

2𝑛
)  𝜂(ℸ2) = 0, 

where  is a local orthonormal frame of the manifold M. 

Taking ℸ2 = 𝜉 yields  Therefore, the proof is completed. 
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Exploring Bicomplex Lebesgue Spaces: Properties 

and Significance 
 

 

 

 

İlker ERYILMAZ1 

 

 

Introduction 

Lebesgue spaces are essential structures in functional analysis 

and measure theory, offering a formal framework for understanding 

function convergence and integrability. The study of Lebesgue 

spaces has been helpful in increasing our understanding of diverse 

mathematical phenomena, providing a flexible platform for 

examining the behavior of functions in various circumstances. As we 

explore deeper into the complexities of Lebesgue spaces, this essay 

focuses on the concepts of sums and intersection within this 

mathematical realm. We want to get insights into the convergence 
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features and interrelationships that emerge when combining or 

intersecting functions in Lebesgue spaces by investigating the 

interaction of these operations. This examination not only advances 

theoretical comprehension of these spaces, but also reveals their 

practical consequences in a variety of mathematical applications. 

Join us on a voyage through the intricacies of sums and crossings in 

Lebesgue spaces, where the convergence of mathematical concepts 

leads to a better knowledge of function structure and behavior 𝔹ℂ-

valued functions arise naturally in various mathematical fields, 

including probability theory, mathematical analysis, and functional 

analysis, and understanding their properties is crucial for advancing 

these areas of study. Indeed, the study of modules with bicomplex 

scalars in the context of functional analysis has gained significant 

attention in recent years. One influential work that has contributed 

to this area is the book (Alpay et al., 2014). The book likely presents 

groundbreaking results and insights related to this topic. Functional 

analysis traditionally deals with vector spaces over a field, such as 

the complex numbers or the real numbers. However, by considering 

modules with bicomplex scalars, where the scalars are elements of 

the bicomplex numbers, a broader framework is introduced. This 

extension allows for the exploration of new mathematical structures 

and the investigation of properties beyond the classical setting. The 

book by Alpay et al. is likely a valuable resource for researchers and 

enthusiasts interested in this area. It likely presents notable results, 

techniques, and applications pertaining to the study of modules with 

bicomplex scalars in the context of functional analysis. These results 

may encompass various aspects of functional analysis, such as 

operator theory, function spaces, and spectral theory, among others. 

They may shed light on the behavior of modules with bicomplex 

scalars, reveal connections to other areas of mathematics, and 

potentially find applications in physics, engineering, or other 

disciplines. 

The series of articles mentioned in the references highlight the 

systematic study of topological bicomplex modules and various 
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fundamental theorems related to them. Here is a breakdown of the 

articles and their contributions: 

In (Kumar & Saini, 2016), the authors studied topological 

bicomplex modules, likely exploring their topological properties and 

investigating concepts such as convergence, continuity, and 

compactness in this context. 

The authors in (Kumar, Kumar & Rochon, 2011) presented 

fundamental theorems, including Banach-Steinhaus theorem, open 

mapping theorem, closed graph theorem and interior mapping 

theorem for bicomplex modules. 

The papers (Saini, Sharma & Kumar, 2020), in collaboration 

with (Kumar, Kumar & Rochon, 2011), likely extends the study of 

fundamental theorems to the setting of topological bicomplex 

modules. The focus may be on generalizing classical results from 

functional analysis to the bicomplex module framework, providing 

a deeper understanding of their properties. Also, the authors likely 

delve further into the study of topological hyperbolic modules, 

topological bicomplex modules, exploring the properties of linear 

operators, continuity, and related topological concepts specific to 

these settings. 

The authors in (Luna- Elizarrarás, Perez-Regalado & Shapiro, 
2014) studied on bicomplex modules and hyperbolic modules and 

wrote the Hahn-Banach theorem for these modules.  

The book (Luna-Elizarrarás et al., 2015) likely provides an in-

depth exploration of bicomplex analysis and geometry. It may cover 

a wide range of topics, including holomorphic functions, integration, 

differential equations, and geometric properties specific to the 

bicomplex domain. 

In (Colombo, Sabatini & Struppa, 2014), the authors focused 

on 𝔹ℂ bounded linear operators and bicomplex functional calculus. 

It may provide a detailed study of operators acting on bicomplex 

modules and explore the construction and properties of functional 

calculi specific to the bicomplex framework.  
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In (Sağır, Değirmen & Duyar, 2023), properties of bicomplex 

matrix transformations between sequences’ spaces 𝑐0 and 𝑐  are 

examined. 

These references collectively represent significant 

contributions to the study of bicomplex modules, functional analysis, 

and related areas. They showcase the exploration of properties, the 

development of new theorems, and the application of functional 

analysis techniques in the context of bicomplex numbers. 

Researchers and readers interested in these topics can refer to these 

articles and the books for detailed insights into the respective areas 

of study. Now, we will give a small summary of bicomplex numbers 

with some basic properties. 

 

Preliminaries on 𝔹ℂ and 𝔹ℂ -Lebesgue spaces 

The set bicomplex numbers 𝔹ℂ which is a four-dimensional 

extension of the complex numbers is defined as 

𝔹ℂ ≔ {𝑊 = 𝑤1 + 𝑗𝑤2| 𝑤1, 𝑤2 ∈ ℂ(𝑖)}. 

Here 𝑖  and 𝑗  are imaginary units satisfying 𝑖𝑗 = 𝑗𝑖  and 𝑖2 =
−1 = 𝑗2. Here ℂ(𝑖) with the imaginary unit 𝑖, stands for the field of 

complex numbers. According to ring structure, for any 𝑍 = 𝑧1 + 𝑗𝑧2,
𝑊 = 𝑤1 + 𝑗𝑤2 in 𝔹ℂ usual addition and multiplication are defined 

as 

𝑍 +𝑊 = (𝑧1 +𝑤1) + 𝑗(𝑧2 +𝑤2) 

𝑍𝑊 = (𝑧1𝑤1 − 𝑧2𝑤2) + 𝑗(𝑧2𝑤1 + 𝑧1𝑤2). 

Under the ordinary addition and multiplication of bicomplex 

numbers, the set 𝔹ℂ  forms a commutative ring. The bicomplex 

numbers have a unit element denoted as 1𝔹ℂ ≔ 1 and this acts as the 

identity for multiplication, such that for any bicomplex number 𝑊, 

1 ∙ 𝑊 = 𝑊 ∙ 1 = 𝑊. In the sense of module structure, the set 𝔹ℂ is 
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a module over itself. This means that 𝔹ℂ satisfies the properties of a 

module, including scalar multiplication and distributivity. If one 

multiplies the imaginary units 𝑖 and 𝑗, then a new hyperbolic unit 𝑘 

can be obtained such that 𝑘2 = 1. This implies that 𝑘 is a square root 

of 1 and is distinct from 𝑖 and 𝑗. The product operation of all units 

𝑖, 𝑗 and 𝑘 in the bicomplex numbers is commutative. Specifically, 

the following relations hold: 

𝑖𝑗 = 𝑘, 𝑗𝑘 = −𝑖  𝑎𝑛𝑑  𝑖𝑘 = −𝑗. 

These properties summarize the basic characteristics of 

bicomplex numbers and their algebraic structure. 

Hyperbolic numbers 𝔻 are a two-dimensional extension of the 

real numbers that form a number system known as the hyperbolic 

plane or hyperbolic plane algebra. They can be represented in the 

form 𝛼 = 𝛽1 + 𝑘𝛽2, where 𝛽1 and 𝛽2 are real numbers, and 𝑘 is the 

hyperbolic unit. In the hyperbolic number system, for any two 

hyperbolic numbers 𝛼 = 𝛽1 + 𝑘𝛽2 and 𝛾 = 𝛿1 + 𝑘𝛿2, addition and 

multiplication are defined as follows: 

𝛼 + 𝛾 = (𝛽1 + 𝛿1) + 𝑘(𝛽2 + 𝛿2) 

𝛼𝛾 = (𝛽1𝛿1 + 𝛽2𝛿2) + 𝑘(𝛽1𝛿2 + 𝛽2𝛿1). 

The hyperbolic numbers form a ring, however, unlike the 

complex numbers, the hyperbolic numbers do not have a 

multiplicative inverse for all nonzero elements. The nonzero 

hyperbolic numbers that have multiplicative inverses are called 

units. The bicomplex numbers contain two imaginary units 𝑖 and 𝑗, 
and the hyperbolic numbers can be taken as a subset of the 

bicomplex numbers by restricting the imaginary part of 𝑗 to be zero. 

Let 𝑊 = 𝑤1 + 𝑗𝑤2 ∈ 𝔹ℂ  where  𝑤1, 𝑤2 ∈ ℂ(𝑖) . By the 

notation of 𝑊 with imaginary units 𝑖 and 𝑗, three conjugations are 

brought out for bicomplex numbers in (Alpay et al., 2014) and 

(Luna-Elizarrarás et al., 2015) as �̅�1 = 𝑤1̅̅̅̅ + 𝑗𝑤2̅̅̅̅ , �̅�2 = 𝑤1 − 𝑗𝑤2 
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and �̅�3 = 𝑤1̅̅̅̅ − 𝑗𝑤2̅̅̅̅  where 𝑤1̅̅̅̅  and 𝑤2̅̅̅̅  are the usual complex 

conjugates of  𝑤1, 𝑤2 ∈ ℂ(𝑖). For any bicomplex number 𝑊, they 

also wrote the following three moduli in (Alpay et al., 2014), (Luna-

Elizarrarás et al., 2015) and (Price, 2018) as: 

i. |𝑊|𝑖
2 = 𝑊 ∙ �̅�2 = 𝑤1

2 +𝑤2
2 ∈ ℂ(𝑖), 

ii. |𝑊|𝑗
2 = 𝑊 ∙ �̅�1 = (|𝑤1|

2 − |𝑤2|
2) + 𝑗(2𝑅𝑒(𝑤1𝑤2̅̅̅̅ )) ∈

ℂ(𝑗) 

iii. |𝑊|𝑘
2 = 𝑊 ∙ �̅�3 = (|𝑤1|

2 + |𝑤2|
2) + 𝑘(−2𝐼𝑚(𝑤1𝑤2̅̅̅̅ )) ∈

𝔻. 

Furthermore, 𝔹ℂ is a normed space with the norm 

‖𝑊‖𝔹ℂ = √|𝑤1|2 + |𝑤2|2 

for any 𝑊 = 𝑤1 + 𝑗𝑤2 in 𝔹ℂ (Alpay et al., 2014). According to this, 

‖𝑊1𝑊2‖𝔹ℂ ≤ √2‖𝑊1‖𝔹ℂ‖𝑊2‖𝔹ℂ 

for every 𝑊1 , 𝑊2 ∈ 𝔹ℂ , and finally 𝔹ℂ  is a quasi-Banach 

algebra (Alpay et al., 2014). If the hyperbolic numbers 𝑒1 and 𝑒2 

defined as 

𝑒1 =
1+𝑘

2
    and   𝑒2 =

1−𝑘

2
, 

then it is easy to see that the set {𝑒1, 𝑒2} is a fundamental set in 

ℂ(𝑖)-vector space 𝔹ℂ and linearly independent. The set {𝑒1, 𝑒2} also 

satisfies the following properties: 

𝑒1
2 = 𝑒1, 𝑒2

2 = 𝑒2, (𝑒1̅)3 = 𝑒1,   (𝑒2̅)3 = 𝑒2 

𝑒1 + 𝑒2 = 1,    𝑒1 ∙  𝑒2 = 0 

with ‖𝑒1‖𝔹ℂ = ‖𝑒2‖𝔹ℂ =
√2

2
. By using this linearly independent 

set  {𝑒1, 𝑒2} , any 𝑊 = 𝑤1 + 𝑗𝑤2 ∈ 𝔹ℂ  can be written as a linear 



 

--53-- 

 

combination of 𝑒1 and 𝑒2 uniquely. That is, 𝑊 = 𝑤1 + 𝑗𝑤2 can be written 

as 

 𝑊 = 𝑤1 + 𝑗𝑤2 = 𝑒1𝑧1 + 𝑒2𝑧2                                     

 (1.1) 

where 𝑧1 = 𝑤1 − 𝑖𝑤2  and 𝑧2 = 𝑤1 + 𝑖𝑤2  (Alpay et al., 

2014). Here 𝑧1 and 𝑧2 are elements of ℂ(𝑖) and (1.1), the preceding 

formula, is named with the idempotent representation of 𝑊. 

Besides the Euclidean-type norm ‖∙‖𝔹ℂ, another norm named 

with (𝔻-valued) hyperbolic-valued norm |𝑊|𝑘  of any bicomplex 

number 𝑊 = 𝑒1𝑧1 + 𝑒2𝑧2 is defined as 

|𝑊|𝑘 = 𝑒1|𝑧1| + 𝑒2|𝑧2|. 

For any hyperbolic number 𝛼 = 𝛽1 + 𝑘𝛽2 ∈ 𝔻, an idempotent 

representation can also be written as 

𝛼 = 𝑒1𝛼1 + 𝑒2𝛼2 

where 𝛼1 = 𝛽1 + 𝛽2  and 𝛼2 = 𝛽1 − 𝛽2  are real numbers. If 

𝛼1 > 0 and 𝛼2 > 0 for any 𝛼 = 𝛽1 + 𝑘𝛽2 ∈ 𝔻, then we say that 𝛼 

is called a positive hyperbolic number. Thus, 𝔻+ ∪ {0}, the set of 

non-negative hyperbolic numbers 

𝔻+ ∪ {0} = {𝛼 = 𝛽1 + 𝑘𝛽2:   𝛽1
2 − 𝛽2

2 ≥ 0, 𝛽1 ≥ 0} 

      = {𝛼 = 𝑒1𝛼1 + 𝑒2𝛼2:   𝛼1, 𝛼2 ≥ 0}. 

can be defined. Now, let 𝛼 and 𝛾 be any two elements of 𝔻. In 

(Alpay et al., 2014) and (Luna-Elizarrarás et al., 2015), a relation ≼ 

is defined on 𝔻 by  

𝛼 ≼ 𝛾  ⇔ 𝛾 − 𝛼 ∈ 𝔻+ ∪ {0}. 

It is showed in (Alpay et al., 2014) that this relation "≼" has 

reflexive, anti-symmetric and transitive properties. Therefore "≼" 
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can define a partial order relation on  𝔻 . If idempotent 

representations of the hyperbolic numbers 𝛼, 𝛾 are written as 𝛼 =
𝑒1𝛼1 + 𝑒2𝛼2 and 𝛾 = 𝑒1𝛾1 + 𝑒2𝛾2, then 𝛼 ≼ 𝛾 implies that 𝛼1 ≤ 𝛾1 
and 𝛼2 ≤ 𝛾2. By 𝛼 ≺ 𝛾, we mean 𝛼1 < 𝛾1 and 𝛼2 < 𝛾2. For more 

details on hyperbolic numbers 𝔻 and partial order "≼", one can refer 

to Section 1.5 of (Alpay et al., 2014), (Luna-Elizarrarás et al., 2015) 

and (Price, 2018). 

Definition 1. Let 𝑈 be a subset of 𝔻. 𝑈 is called a 𝔻-bounded 

above set if there is a hyperbolic number 𝛿 such that 𝛿 ⋟ 𝛼 for all 

𝛼 ∈ 𝑈. If 𝑈 ⊂ 𝔻 is a 𝔻-bounded set from above, then the hyperbolic 

supremum of 𝑈 is defined as the smallest member of the set of all 

upper bounds of 𝑈 (Luna-Elizarrarás et al., 2015). 

In other words, the hyperbolic number 𝜆 = 𝑒1𝜆1 + 𝑒2𝜆2 , 

where 𝜆1, 𝜆2 ∈ ℝ, is the 𝔻-supremum of 𝑈 if 

i. 𝑒1𝛼1 + 𝑒2𝛼2 ≼ 𝑒1𝜆1 + 𝑒2𝜆2  for each 𝛼 = 𝑒1𝛼1 +

𝑒2𝛼2 ∈ 𝑈 

ii. For any 𝜀 = 𝑒1𝜀1 + 𝑒2𝜀2 ≻ 0, there exists 𝜃 = 𝑒1𝜃1 +

𝑒2𝜃2 ∈ 𝑈  such that 𝑒1𝜃1 + 𝑒2𝜃2 ≻ 𝑒1(𝜆1 − 𝜀1) +

𝑒2(𝜆2 − 𝜀2)  

are satisfied. 

Remark 1. Let 𝑒1𝜃1 + 𝑒2𝜃2 be a 𝔻 -bounded above subset of 

𝔻  and 𝑈1 ∶= {𝛾1: 𝑒1𝛾1 + 𝑒2𝛾2 ∈ 𝑈} , 𝑈2 ∶= {𝛾2: 𝑒1𝛾1 + 𝑒2𝛾2 ∈ 𝑈} . 

Then the 𝑠𝑢𝑝𝔻𝑈 is given by 

𝑠𝑢𝑝𝔻𝑈 ∶= 𝑒1𝑠𝑢𝑝𝑈1 + 𝑒2𝑠𝑢𝑝𝑈2. 

Similarly, for any set 𝑈 which is 𝔻-bounded from below, 𝔻-

infimum of 𝑈 can be defined as 

𝑖𝑛𝑓𝔻𝑈 ∶= 𝑒1𝑖𝑛𝑓𝑈1 + 𝑒2𝑖𝑛𝑓𝑈2 

where 𝑈1 and 𝑈2 are as above, [Remark 1.5.2] (Alpay et al., 

2014). 
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Definition 2. Let (𝑋, +) be an abelian group and (𝑋,+,∙) be a 

𝔹ℂ-module. If there is a topology 𝜏𝑋 in 𝑋, such that the operations 

+:𝑋 × 𝑋 → 𝑋  and ∙: 𝔹ℂ × 𝑋 → 𝑋  are continuous, then (𝑋,+,∙)  is 

called a topological 𝔹ℂ-module. 

Remark 2. A 𝔹ℂ -module space or 𝔻-module space 𝑌 can be 

decomposed as 

𝑌 = 𝑒1𝑌1 + 𝑒2𝑌2                                                           (1.2) 

where 𝑌1 = 𝑒1𝑌  and 𝑌2 = 𝑒2𝑌  are ℝ -vector or ℂ(𝑖) -vector 

spaces. The spelling in (1.2) is called as the idempotent 

decomposition of the space 𝑌. Therefore, any element 𝑦 in 𝑌 can be 

uniquely inscribed as 𝑦 = 𝑒1𝑦1 + 𝑒2𝑦2  with 𝑦1 ∈ 𝑌1  and  𝑦2 ∈ 𝑌2 , 

(Alpay et al., 2014).  

The following is known from (Saini, Sharma & Kumar, 2020). 

Definition 3. Let (𝑋, ‖∙‖𝑋) be a 𝔹ℂ-module. If every Cauchy 

sequence in 𝑋 converges to any element of it with respect to the 

norm, then (𝑋, ‖∙‖𝑋) is called a bicomplex Banach module. 

Proposition 1. (𝑋, ‖∙‖𝑋)is a bicomplex Banach module, if and 

only if, the decomposition pairs of the space, (𝑋1, ‖∙‖𝑋1)  and 

(𝑋2, ‖∙‖𝑋2) are complex Banach spaces (Kumar & Saini, 2016). 

Definition 4. Let 𝑇: 𝑋 → 𝑋 be a map. Then 𝑇 is called a 𝔹ℂ-

linear operator on 𝑋, if the following exist: 

i. 𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦), 

ii. 𝑇(𝛼𝑥) = 𝛼𝑇(𝑥) 

for every 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ 𝔹ℂ.  

The following result is well known from (Colombo, Sabatini 

& Struppa, 2014). 

Proposition 2. Let 𝑋  be a bicomplex Banach module and 

𝑇: 𝑋 → 𝑋 be a linear operator. Suppose that 𝑋 has an idempotent 
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decomposition as 𝑋 = 𝑒1𝑋1 + 𝑒2𝑋2. Then the operator 𝑇 admits the 

idempotent representation 𝑇 = 𝑒1𝑇1 + 𝑒2𝑇2, where 

𝑇𝑗: 𝑒𝑗𝑋 → 𝑒𝑗𝑋 

                            𝑥 → 𝑇𝑗(𝑥) ∶= 𝑒𝑗𝑇(𝑒𝑗𝑥) 

 are linear operators for 𝑗 = 1,2 respectively. 

Definition 5. Let ℳ be a 𝜎-algebra on a set Ω and 𝜇 = 𝜇1𝑒1 +
𝜇2𝑒2 be a bicomplex-valued function defined on Ω. Then 𝜇 is called 

a bicomplex measure on ℳ if 𝜇1 and 𝜇2 are both complex measures 

on  ℳ . Nevertheless if 𝜇1  and 𝜇2  are positive measures on ℳ 

namely, range of both 𝜇1 , 𝜇2  are  0, , then 𝜇  is called a 𝔻 -

measure on ℳ. Also, 𝜇 is called a 𝔻+-measure on ℳ, if 𝜇1, 𝜇2 are 

real measures on ℳ  i.e. 𝜇1(∙), 𝜇2(∙) ∈ [0,∞), (Ghosh & Mondal, 

2022). 

Assume that Ω = (Ω,ℳ, 𝜇)  is a 𝜎 -finite complete measure 

space and 𝑓1, 𝑓2  are complex-valued (real-valued) measurable 

functions on Ω. The function having idempotent decomposition 𝑓 =
𝑓1𝑒1 + 𝑓2𝑒2  is called as a 𝔹ℂ -measurable function and |𝑓|𝑘 =
|𝑓1|𝑒1 + |𝑓2|𝑒2  is called a 𝔻 -valued measurable function on Ω 

(Dubey, Kumar & Sharma, 2014). Thus, for any given complex 

valued function space (𝐹(Ω), ‖∙‖Ω) , one can create a 𝔹ℂ-valued 

function space (𝐹(Ω,𝔹ℂ), ‖∙‖𝔹ℂ)  by combining all 𝑓1, 𝑓2  and 

bringing out functions of the type 

𝑓 = 𝑓1𝑒1 + 𝑓2𝑒2 

where 𝑓1  and 𝑓2  are in (𝐹(Ω), ‖∙‖Ω)  with ‖𝑓‖𝔹ℂ
2 =

1

2
(‖𝑓1‖Ω

2 + ‖𝑓2‖Ω
2 ) . Similar definition can be given for any 

hyperbolic measurable function. 

For any 𝔹ℂ-valued measurable function 𝑓 = 𝑓1𝑒1 +  𝑓2𝑒2, it is 

easy to see that |𝑓|𝑘 = |𝑓1|𝑒1 + |𝑓2|𝑒2  is 𝔻 -valued measurable. 

Because if 𝑓 = 𝑓1𝑒1 + 𝑓2𝑒2  is a 𝔹ℂ -valued measurable function, 
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then 𝑓1  and  𝑓2  are ℂ -measurable functions. Therefore real and 

imaginary parts of 𝑓1 and 𝑓2 are ℝ-valued measurable and so does 
|𝑓1| and |𝑓2|. As a result, |𝑓|𝑘 is 𝔻-measurable. Also, for any two 

𝔹ℂ-valued measurable functions 𝑓 and 𝑔, it can be easily seen that 

their sum and multiplication functions are also 𝔹ℂ -measurable 

functions, (Dubey, Kumar & Sharma, 2014) and (Ghosh & Mondal, 

2022). More results on 𝔻-topology such as 𝔻-limit, 𝔻-continuity, 

𝔻-Cauchy and 𝔻-convergence etc. can be found in (Değirmen & 

Sağır, 2023), (Ghosh & Mondal, 2022), (Toksoy & Sağır, 2023) and 

the references therein. 

Definition 6. Let ℳ be a 𝜎-algebra and 𝜇 = 𝑒1𝜇1 + 𝑒2𝜇2 be a 

𝔹ℂ -measure on (𝛺,ℳ) . Then any two bicomplex valued 𝔹ℂ -

measurable functions 𝑓 = 𝑒1𝑓1 + 𝑒2𝑓2  and 𝑔 = 𝑒1𝑔1 + 𝑒2𝑔2  on Ω 

are called to be equal (𝜇-a.e.) if 𝑓1 = 𝑔1 (𝜇1-a.e.) and 𝑓2 = 𝑔2 (𝜇2-

a.e.). 

Definition 7. Let 𝜇 = 𝑒1𝜇1 + 𝑒2𝜇2  be a 𝔻 -measure on a 

measure space (Ω,ℳ)  and 1 ≤ 𝑝 < ∞ . Suppose 𝐿𝑝(Ω, 𝜇1)  and 

𝐿𝑝(Ω, 𝜇2) stand for the linear space of all (equivalence classes of) 

complex valued, measurable functions 𝑓1 and 𝑓2 defined on Ω with 

∫|𝑓1(𝑥)|
𝑝𝑑𝜇1

Ω

< ∞    and    ∫|𝑓2(𝑥)|
𝑝𝑑𝜇2

Ω

< ∞. 

Then the space 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) = 𝐿𝔹ℂ

𝑝 (𝜇)  consist of 

equivalence classes all bicomplex valued, bicomplex measurable 

functions 𝑓 = 𝑒1𝑓1 + 𝑒2𝑓2  on Ω  such that 𝑓1 ∈ 𝐿
𝑝(Ω, 𝜇1)  and 𝑓2 ∈

𝐿𝑝(Ω, 𝜇2) (Toksoy & Sağır, 2023).  

Proposition 3. For 1 ≤ 𝑝 < ∞, 𝐿𝔹ℂ
𝑝 (𝜇) is a 𝔹ℂ-module under 

usual addition operation in functions and bicomplex scalar 

multiplication (Toksoy & Sağır, 2023). 

Let 1 ≤ 𝑝 < ∞. By using Definition 2 and Remark 2, we may 

write an idempotent decomposition 

𝐿𝔹ℂ
𝑝 (𝜇) = 𝑒1𝐿

𝑝(𝜇1) + 𝑒2𝐿
𝑝(𝜇2) 



 

--58-- 

 

for 𝐿𝔹ℂ
𝑝 (𝜇)  where 𝐿𝑝(𝜇1)  and 𝐿𝑝(𝜇2)  are usual Lebesgue 

spaces, (Toksoy & Sağır, 2023). Therefore, a hyperbolic (𝔻-valued) 

norm can be defined on the 𝔹ℂ-module 𝐿𝔹ℂ
𝑝 (𝜇) with 

‖𝑓‖𝑝,𝔻 = 𝑒1‖𝑓1‖𝑝,𝜇1 + 𝑒2‖𝑓2‖𝑝,𝜇2  

for any 𝑒1𝑓1 + 𝑒2𝑓2 = 𝑓 ∈ 𝐿𝔹ℂ
𝑝 (𝜇). 

Proposition 4. The space (𝐿𝔹ℂ
𝑝 (𝜇), ‖ ⋅ ‖𝑝,𝔻) is a bicomplex 

Banach module for 1 ≤ 𝑝 < ∞ (Toksoy & Sağır, 2023).  

In (Toksoy & Sağır, 2023), by using Definition 2.2 of 

(Değirmen & Sağır, 2023), a new functional 

                       ‖𝑓‖𝑝,𝑘 = (∫ |𝑓(𝑥)|𝑘
𝑝
𝑑𝜇

𝛺
)
1

𝑝 

                            = (∫ |𝑒1𝑓1(𝑥) + 𝑒2𝑓2(𝑥)|𝑘
𝑝(𝑒1𝑑𝜇1 + 𝑒2𝑑𝜇2)𝛺

)
1

𝑝          (1.3) 

is defined and showed that ‖𝑓‖𝑝,𝔻 = ‖𝑓‖𝑝,𝑘  for any 𝑓 ∈

𝐿𝔹ℂ
𝑝 (𝜇). 

New Results on 𝔹ℂ-Lebesgue spaces 

Proposition 5. Let 1 ≤ 𝑝 < ∞. The set 

𝕊 = {𝑠 = 𝑠1𝑒1 + 𝑠2𝑒2 | 𝑠1,  𝑠2 ∈ 𝑆} 

is 𝔻−dense in 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇)  where 𝑆 is the set of simple 

functions. 

Proof. Let 𝜀 = 𝑒1𝜀1 + 𝑒2𝜀2 ≻ 0 and 𝑓 = 𝑒1𝑓1 + 𝑒2𝑓2 be any 

element of 𝐿𝔹ℂ
𝑝 (𝜇). By the definition of 𝐿𝔹ℂ

𝑝 (𝜇), the functions 𝑓1 and 

𝑓2  belong to 𝐿𝑝(𝜇1)  and 𝐿𝑝(𝜇2) . Since the set of simple (step) 

functions 𝑆 is dense subset of 𝐿𝑝(𝜇1) and 𝐿𝑝(𝜇2), then there exist 

simple functions ℎ1 and ℎ2 such that 

‖𝑓1 − ℎ1‖𝑝,𝜇1 < 𝜀1   and    ‖𝑓2 − ℎ2‖𝑝,𝜇2 < 𝜀2. 

If one call 𝑒1ℎ1 + 𝑒2ℎ2 as ℎ, then ℎ ∈ 𝕊 and 
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‖𝑓 − ℎ‖𝑝,𝔻 = 𝑒1‖𝑓1 − ℎ1‖𝑝,𝜇1 + 𝑒2‖𝑓2 − ℎ2‖𝑝,𝜇2
                      ≺ 𝑒1𝜀1 + 𝑒2𝜀2 = 𝜀.

 

This means 𝕊 is 𝔻−dense in 𝐿𝔹ℂ
𝑝 (𝜇). 

Remark 3. If we define 𝐶𝑐(𝛺, 𝔹ℂ) as the set of all functions 

𝑓1𝑒1 + 𝑓2𝑒2  where 𝑓1, 𝑓2 ∈ 𝐶𝑐(𝛺), then 𝐶𝑐(𝛺,𝔹ℂ)  is 𝔻 −dense in 

𝐿𝔹ℂ
𝑝 (𝜇) by Lusin's theorem where 𝐶𝑐(𝛺) is the set of all continuous 

complex functions on 𝛺 whose support is compact.  

The following theorem is Theorem 2.6 of (Toksoy & Sağır, 

2023). 

Theorem 1. (Hölder’s inequality) Let 1 < 𝑝, 𝑞 < ∞  such that 
1

𝑝
+
1

𝑞
= 1 

and 𝑓 ∈ 𝐿𝔹ℂ
𝑝 (𝜇) , 𝑔 ∈ 𝐿𝔹ℂ

𝑞 (𝜇)  with 𝑓 = 𝑓1𝑒1 + 𝑓2𝑒2 , 𝑔 = 𝑔1𝑒1 + 𝑔2𝑒2 . 

Then 𝑓𝑔 ∈ 𝐿𝔹ℂ
1 (𝜇) and 

‖𝑓𝑔‖1,𝔻 ≼ ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻. 

Theorem 2. Let 𝑓 be an element of 𝐿𝔹ℂ
𝑝 (Ω,𝔐, 𝜇) for 1 < 𝑝 <

∞. Then 

‖𝑓‖𝑝,𝔻 = sup𝔻
𝑔∈𝐿𝔹ℂ

𝑞
(𝜇)

{
‖𝑓𝑔‖1,𝔻
‖𝑔‖𝑞,𝔻

: 𝑔 ≠ 0,  
1

𝑝
+
1

𝑞
= 1}. 

Proof. Using Hölder's inequality and (1.3), we can write that 

‖𝑓𝑔‖1,𝔻 = ‖𝑓𝑔‖1,𝑘 = ∫ |𝑓𝑔|𝑘𝑑𝜇𝛺
≼ ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻. 

Then 

‖𝑓𝑔‖1,𝔻‖𝑔‖𝑞,𝔻
−1 ≼ ‖𝑓‖𝑝,𝔻 

for all 𝑔 ≠ 0 and this implies that 

sup𝔻
𝑔∈𝐿𝔹ℂ

𝑞
(𝜇)

{
‖𝑓𝑔‖1,𝔻

‖𝑔‖𝑞,𝔻
: 𝑔 ≠ 0,  

1

𝑝
+

1

𝑞
= 1} ≼ ‖𝑓‖𝑝,𝔻.                      (1.4) 
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Now suppose that 𝑓 is non-zero and 𝑔 = 𝛽|𝑓|𝑘
𝑝−1

 where 𝛽 is a 

constant. In that case |𝑓𝑔|𝑘 = |𝛽|𝑘|𝑓|𝑘
𝑝
 and ‖𝑓𝑔‖1,𝔻 = |𝛽|𝑘‖𝑓‖𝑝,𝑘

𝑝
. 

If one chooses |𝛽|𝑘 as ‖𝑓‖𝑝,𝔻
1−𝑝

, then the equality 

 ‖𝑓𝑔‖1,𝔻 = |𝛽|𝑘‖𝑓‖𝑝,𝑘
𝑝

= ‖𝑓‖𝑝,𝔻
1−𝑝‖𝑓‖𝑝,𝔻

𝑝
= ‖𝑓‖𝑝,𝔻    (1.5) 

is written. Since |𝑔|𝑘
𝑞 = |𝛽|𝑘

𝑞|𝑓|𝑘
(𝑝−1)𝑞

 and (𝑝 − 1)𝑞 = 𝑞 , if 

we integrate the both sides of this equality, then 

‖𝑔‖𝑞,𝔻 = ‖𝑔‖𝑞,𝑘 = (∫|𝑔|𝑘
𝑞
𝑑𝜇

𝛺

)

1
𝑞

= (∫|𝛽|𝑘
𝑞|𝑓|𝑘

(𝑝−1)𝑞
𝑑𝜇

𝛺

)

1
𝑞

              = |𝛽|𝑘‖𝑓‖𝑝,𝑘

𝑝
𝑞

= ‖𝑓‖𝑝,𝔻
1−𝑝‖𝑓‖𝑝,𝑘

𝑝
𝑞

= 1

 

and ‖𝑔‖𝑞,𝔻
−1 = 1 are obtained. Thus by using (1.5), we can write 

 ‖𝑓‖𝑝,𝔻 = ‖𝑓𝑔‖1,𝔻‖𝑔‖𝑞,𝔻
−1 ≼ sup𝔻

𝑔∈𝐿𝔹ℂ
𝑞
(𝜇)

{‖𝑓𝑔‖1,𝔻‖𝑔‖𝑞,𝔻
−1 : 𝑔 ≠

0,  
1

𝑝
+
1

𝑞
= 1}.   (1.6) 

Combining this (1.6) with (1.4), we get the result. 

The following theorem, Minkowski inequality for 

𝔹ℂ −Lebesgue space, is Theorem 2.8 of (Toksoy & Sağır, 2023). 

Theorem 3. Let 𝑓 = 𝑓1𝑒1 + 𝑓2𝑒2  and 𝑔 = 𝑔1𝑒1 + 𝑔2𝑒2  be any two 

elements of 𝐿𝔹ℂ
𝑝 (𝜇). Then 

‖𝑓 + 𝑔‖𝑝,𝔻 ≼ ‖𝑓‖𝑝,𝔻 + ‖𝑔‖𝑝,𝔻 

for all 1 ≤ 𝑝 ≤ ∞. 

To show the duality of 𝔹ℂ-Lebesgue spaces for 1 < 𝑝 < ∞, 

following similar arguments are adapted from the book (Castillo & 

Rafeiro, 2016). 

Theorem 4. Each function 𝑔 ∈ 𝐿𝔹ℂ
𝑞 (𝜇)  defines a linear 

functional 𝐹which is 𝔻-bounded in 𝐿𝔹ℂ
𝑝 (𝜇) given by 
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𝐹(𝑓) = ∫𝑓𝑔𝑑𝜇

𝛺

 

and ‖𝐹‖ = ‖𝑔‖𝑞,𝔻. 

Proof. Let 𝑔 = 𝑒1𝑔1 + 𝑒2𝑔2  be a fixed function in 𝐿𝔹ℂ
𝑞 (𝜇). 

We will show that 𝐹 given by  

𝐹(𝑓) = ∫𝑓𝑔𝑑𝜇

𝛺

 

is a linear functional in 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇). Indeed, let 𝛼 and 𝛽 be 

bicomplex numbers and 𝑓 , ℎ  be elements of 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) where 

𝑓 = 𝑒1𝑓1 + 𝑒2𝑓2 and ℎ = 𝑒1ℎ1 + 𝑒2ℎ2. Then 

𝐹(𝛼𝑓 + 𝛽ℎ) = ∫(𝛼𝑓 + 𝛽ℎ)𝑔𝑑𝜇

𝛺

            = ∫[(𝛼1𝑓1 + 𝛽1ℎ1)𝑒1 + (𝛼2𝑓2 + 𝛽2ℎ2)𝑒2](𝑒1𝑔1 + 𝑒2𝑔2)𝑑𝜇

𝛺

           = 𝑒1∫(𝛼1𝑓1 + 𝛽1ℎ1)𝑔1𝑑𝜇1
𝛺

+ 𝑒2∫(𝛼2𝑓2 + 𝛽2ℎ2)𝑔2𝑑𝜇2
𝛺

          = 𝑒1∫𝛼1𝑓1𝑔1𝑑𝜇1
𝛺

+ 𝑒1∫𝛽1ℎ1𝑔1𝑑𝜇1
𝛺

+ 𝑒2∫𝛼2𝑓2𝑔2𝑑𝜇2
𝛺

+ 𝑒2∫𝛽2ℎ2𝑔2𝑑𝜇2
𝛺

 

 

          = 𝑒1 ∫ 𝛼1𝑓1𝑔1𝑑𝜇1𝛺
+ 𝑒2 ∫ 𝛼2𝑓2𝑔2𝑑𝜇2𝛺

+ 𝑒1 ∫ 𝛽1ℎ1𝑔1𝑑𝜇1𝛺
+ 𝑒2 ∫ 𝛽2ℎ2𝑔2𝑑𝜇2𝛺

          = (𝑒1𝛼1 + 𝑒2𝛼2) ∫ (𝑒1𝑓1 + 𝑒2𝑓2)(𝑒1𝑔1 + 𝑒2𝑔2)(𝑒1𝑑𝜇1 + 𝑒2𝑑𝜇2)𝛺

                           +(𝑒1𝛽1 + 𝑒2𝛽2) ∫ (𝑒1𝑓1 + 𝑒2𝑓2)(𝑒1𝑔1 + 𝑒2𝑔2)(𝑒1𝑑𝜇1 + 𝑒2𝑑𝜇2)𝛺

         = 𝛼 ∫ 𝑓𝑔𝑑𝜇
𝛺

+ 𝛽 ∫ ℎ𝑔𝑑𝜇
𝛺

         = 𝛼𝐹(𝑓) + 𝛽𝐹(ℎ).

 

On the other hand 

|𝐹(𝑓)|𝑘 = |∫𝑓𝑔𝑑𝜇

𝛺

|

𝑘

≼ ∫|𝑓𝑔|𝑘𝑑𝜇

𝛺

≼ ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻 
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by Theorem 1. Then it can be written that 

|𝐹(𝑓)|𝑘
‖𝑓‖𝑝,𝔻

≼ ‖𝑔‖𝑞,𝔻 

which is meaning 

 ‖𝐹‖ ≼ ‖𝑔‖𝑞,𝔻.                                              (1.7) 

This inequality and the previous ones show that 𝐹  is a 

𝔻−bounded linear operator. Furthermore, if we define a function 𝑓 

as 

                                                      𝑓 = |𝑔|𝑘
𝑞−2

�̅�3                                              (†) 

where �̅�3 is the third conjugate of 𝑔, then  

                                  𝑓𝑔 = |𝑔|𝑘
𝑞−2

�̅�3𝑔 = |𝑔|𝑘
𝑞−2|𝑔|𝑘

2 = |𝑔|𝑘
𝑞

                   (††) 

can be written by the known equality 𝑊�̅�3 = |𝑊|𝑘
2. Besides, 

we get 

|𝑓|𝑘 = |𝑔|𝑘
𝑞−2|�̅�3|𝑘 = |𝑔|𝑘

𝑞−1
 

by (†) and  

                                    |𝑓|𝑘
𝑝
= |𝑔|𝑘

𝑝(𝑞−1)
= |𝑔|𝑘

𝑞
                                 (*) 

can be obtained since 𝑝(𝑞 − 1) = 𝑞. Then we have 

 𝐹(𝑓) = ∫ 𝑓𝑔𝑑𝜇
𝛺

= ∫ |𝑔|𝑘
𝑞
𝑑𝜇

𝛺
= ‖𝑔‖𝑞,𝔻

𝑞
,                             (1.8) 

by (††) and then 

∫|𝑔|𝑘
𝑞
𝑑𝜇 =

𝛺

‖𝑔‖𝑞,𝑘
𝑞

= ‖𝑔‖𝑞,𝔻
𝑞

= ‖𝑔‖𝑞,𝔻
𝑝(𝑞−1)

=
‖𝑔‖𝑞,𝔻

𝑝𝑞

‖𝑔‖𝑞,𝔻
𝑝 , 

where  

                            ‖𝑔‖𝑞,𝔻
𝑝

∫ |𝑔|𝑘
𝑞
𝑑𝜇

𝛺
= ‖𝑔‖𝑞,𝔻

𝑝 ‖𝑔‖𝑞,𝑘
𝑞

= ‖𝑔‖𝑞,𝔻
𝑝𝑞
.                                  

(**) 
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Therefore, by using (*) and (**) 

‖𝑔‖𝑞,𝔻
𝑝

∫|𝑔|𝑘
𝑞
𝑑𝜇

𝛺

= ‖𝑔‖𝑞,𝔻
𝑝

∫|𝑓|𝑘
𝑝
𝑑𝜇

𝛺

= ‖𝑔‖𝑞,𝔻
𝑝𝑞

 

can be written. From here, we get 

‖𝑔‖𝑞,𝔻
𝑞

= ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻. 

As a result, by (1.8) 

|𝐹(𝑓)|𝑘 ≽ 𝐹(𝑓) = ‖𝑔‖𝑞,𝔻‖𝑓‖𝑝,𝔻, 

and 

|𝐹(𝑓)|𝑘
‖𝑓‖𝑝,𝔻

≽ ‖𝑔‖𝑞,𝔻 

can be obtained. Therefore, there is a function 𝑓 = |𝑔|𝑘
𝑞−2�̅�3 

satisfying  

‖𝐹‖ ≽ ‖𝑔‖𝑞,𝔻. 

Consequently, the norm attains the supremum and ‖𝐹‖ =
‖𝑔‖𝑞,𝔻 by (1.7). 

Lemma 1. Let (Ω,ℳ, 𝜇) be a finite measure space. Let 𝑔 ∈
𝐿𝔹ℂ
1 (Ω,ℳ, 𝜇)  be such that for any 𝑀 ≻ 0  and for every simple 

function 𝑠 ∈ 𝕊 = {𝑠 = 𝑠1𝑒1 + 𝑠2𝑒2 | 𝑠1,  𝑠2 ∈ 𝑆}  the following 

inequality 

|∫ 𝑠𝑔𝑑𝜇

𝛺

|

𝑘

≼ 𝑀‖𝑠‖𝑝,𝔻 

holds for all 1 ≤ 𝑝 < ∞ . Then 𝑔 ∈ 𝐿𝔹ℂ
𝑞 (Ω,ℳ, 𝜇)  with 

‖𝑔‖𝑞,𝔻 ≼ 𝑀, where 𝑝 and 𝑞 are the conjugates. 

Proof. The proof will be seperated in two cases. 
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Case I. Let 𝑝 = 1 and 𝐵 = {𝑥 ∈ 𝛺:𝑀 ≺ |𝑔(𝑥)|𝑘}. It is easy to see that 𝐵 

is in ℳ. If we choose the function 𝑠 = 𝑒1𝜒𝐵 + 𝑒2𝜒𝐵, then by hypothesis 

we have 

|∫ 𝑠𝑔𝑑𝜇

𝛺

|

𝑘

= |∫(𝑒1𝜒𝐵 + 𝑒2𝜒𝐵)𝑔𝑑𝜇

𝛺

|

𝑘

= |∫𝑔𝑑𝜇

𝐵

|

𝑘

                     ≼ ∫|𝑔|𝑘𝑑𝜇

𝐵

≼ 𝑀‖𝜒𝐵‖1,𝔻

 

namely 

|∫ 𝑔𝑑𝜇
𝐵

|
𝑘
≼ ∫ |𝑔|𝑘𝑑𝜇𝐵

≼ 𝑀‖𝜒𝐵‖1,𝔻 = 𝑀(𝑒1𝜇1(𝐵) + 𝑒2𝜇2(𝐵)) =

∫ 𝑀𝑑𝜇
𝐵

. 

Then one can see that 

∫ (|𝑔|𝑘 −𝑀)𝑑𝜇𝐵
≼ 0. 

Since |𝑔|𝑘 ≻ 𝑀, we can conclude that 𝜇(𝐵) = 0 which means 

that |𝑔(𝑥)|𝑘 ≼ 𝑀 (𝜇 -a.e.) and so ‖𝑔‖∞,𝔻 ≼ 𝑀 . As a result, the 

lemma is proved for Case I. 

Case II. Let 1 < 𝑝 < ∞ . Since |𝑔|𝑘
𝑞 ≻ 0 , there exists a 

sequence of nonnegative simple functions {𝑠𝑛}𝑛∈ℕ  such that 𝑠𝑛
𝔻
→ |𝑔|𝑘

𝑞
 pointwise by Proposition 5. Let 𝑡𝑛 = 𝑠𝑛

1

𝑝 ⋅ sgn𝔻(𝑔)  be a 

sequence derived from {𝑠𝑛}𝑛∈ℕ where sgn𝔻(𝑔) = �̅�3 |𝑔3|⁄
𝑘
 and �̅�3 

is the third conjugate of 𝑔. Note that each 𝑡𝑛 is a simple function and 

‖𝑡𝑛‖𝑝,𝔻 = (∫|𝑡𝑛|𝑘
𝑝
𝑑𝜇

𝛺

)

1
𝑝

= (∫|𝑠𝑛

1
𝑝
⋅ sgn𝔻(𝑔)|

𝑘

𝑝

𝑑𝜇

𝛺

)

1
𝑝

= (∫|𝑠𝑛|𝑘𝑑𝜇

𝛺

)

1
𝑝

= ‖𝑠𝑛‖1,𝔻

1
𝑝
. 

Since 
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𝑔𝑡𝑛 = 𝑔𝑠𝑛

1
𝑝
⋅ sgn𝔻(𝑔) = 𝑠𝑛

1
𝑝
⋅ |𝑔|𝑘 ≽ 𝑠𝑛

1
𝑝
𝑠𝑛

1
𝑞
= 𝑠𝑛, 

it can be written by the hypothesis that 

0 ≼ ∫ 𝑠𝑛𝑑𝜇𝛺
≼ ∫ 𝑔 ⋅ 𝑡𝑛𝑑𝜇𝛺

≼ 𝑀‖𝑡𝑛‖𝑝,𝔻. 

Therefore, we get 

∫ 𝑠𝑛𝑑𝜇𝛺
≼ 𝑀𝑞. 

By using the bicomplex monotone convergence theorem 

[Theorem 3.7] in (Ghosh & Mondal, 2022), we can conclude that 

∫|𝑔|𝑘
𝑞
𝑑𝜇

𝛺

≼ 𝑀𝑞 , 

where 𝑔 ∈ 𝐿𝔹ℂ
𝑞 (Ω,ℳ, 𝜇) and ‖𝑔‖𝑞,𝔻 ≼ 𝑀. 

Theorem 5. (Riesz Representation Theorem for 𝔹ℂ-Lebesgue 

spaces). Let (Ω,ℳ, 𝜇) be a 𝜎-finite measure space and 1 ≤ 𝑝 < ∞. 

If 𝑇  is a linear functional in 𝐿𝔹ℂ
𝑝 (𝜇) , then there exists a unique 

function 𝑔 in 𝐿𝔹ℂ
𝑞 (𝜇) such that 

 𝑇(𝑓) = ∫ 𝑓𝑔𝑑𝜇
𝛺

                                                  (1.9) 

for all elements of 𝐿𝔹ℂ
𝑝 (𝜇) and  

 ‖𝑇‖ = ‖𝑔‖𝑞,𝔻                                                         (1.10) 

where 𝑝, 𝑞 are the conjugates. 

Proof. At first, the uniqueness of 𝑔 will be shown. For this, 

suppose that there exists functions 𝑔1, 𝑔2 ∈ 𝐿𝔹ℂ
𝑞 (𝜇) such that satisfy 

(1.9), namely 

∫𝑔1
𝐸

𝑑𝜇 = ∫𝑔2
𝐸

𝑑𝜇 

for all 𝐸 ∈ ℳ with 𝜇(𝐸) ≺ ∞𝔻 where 

𝑔1(𝑥) = 𝑒1𝑔1
(1)(𝑥) + 𝑒2𝑔1

(2)(𝑥)   and   𝑔2(𝑥) = 𝑒1𝑔2
(1)(𝑥) + 𝑒2𝑔2

(2)(𝑥). 
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 Since (Ω,ℳ, 𝜇) is a 𝜎-finite measure space, we can find a 

sequence of disjoints sets {𝛺𝑛}𝑛∈ℕ  in ℳ  such that 𝜇(Ω𝑛) =
𝑒1𝜇1(Ω𝑛) + 𝑒2𝜇2(Ω𝑛) ≺ ∞𝔻 for all 𝑛 and 

Ω =⋃Ω𝑛

∞

𝑛=1

. 

Now, let 𝐴:= {𝑥 ∈ 𝛺: 𝑔1(𝑥) ≻ 𝑔2(𝑥)} and 𝐵:= {𝑥 ∈ 𝛺:𝑔1(𝑥) ≺ 𝑔2(𝑥)}. 

Then 

∫ 𝑔1𝑑𝜇

𝛺𝑛∩𝐴

= ∫ 𝑔2𝑑𝜇

𝛺𝑛∩𝐴

 

and so 

0 = ∫ (𝑔1 − 𝑔2)𝑑μ

𝛺𝑛∩𝐴

= 𝑒1 ∫ (𝑔1
(1)
− 𝑔2

(1)
)𝑑𝜇1

𝛺𝑛∩𝐴

+ 𝑒2 ∫ (𝑔1
(2)
− 𝑔2

(2)
) 𝑑𝜇2

𝛺𝑛∩𝐴

. 

Since 𝑔1(𝑥) ≻ 𝑔2(𝑥) i.e. 𝑔1
(1)(𝑥) > 𝑔2

(1)(𝑥) and 𝑔1
(2)(𝑥) > 𝑔2

(2)(𝑥) for all 

𝑥 ∈ 𝛺𝑛 ∩ 𝐴, we can find that 𝜇1(𝛺𝑛 ∩ 𝐴) = 0 and 𝜇2(𝛺𝑛 ∩ 𝐴) = 0 for all 

𝑛 ∈ ℕ. Then 

 
𝜇(𝐴) = 𝑒1𝜇1(𝐴) + 𝑒2𝜇2(𝐴)

          = 𝑒1 ∑ 𝜇1
∞
𝑛=1 (𝐴 ∩ 𝛺𝑛) + 𝑒2 ∑ 𝜇2

∞
𝑛=1 (𝐴 ∩ 𝛺𝑛) = 0.

 

Similarly 𝜇(𝐵) = 0  and 𝑔1
(1)
= 𝑔2

(1)
( 𝜇1 -a.e), 𝑔1

(2)
= 𝑔2

(2)
( 𝜇2 -a.e). 

Therefore 𝑔1 = 𝑔2 (𝜇-a.e.) and this proves the uniqueness. 

Now we'll prove the existence of 𝑔 by cases. 

Case 1. Let 𝜇(Ω) ≺ ∞𝔻 and define 

𝑒1𝑣1(𝐸) + 𝑒2𝑣2(𝐸) = 𝑣(𝐸) = 𝑇(𝜒𝐸) = 𝑒1𝑇1(𝜒𝐸) + 𝑒2𝑇2(𝜒𝐸) 
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for each 𝐸 ∈ ℳ. Since 𝜇(Ω) ≺ ∞𝔻, we get 𝜇1(𝐸),   𝜇2(𝐸) < ∞. Thus 

‖𝜒𝐸‖𝑝,𝔻 = 𝑒1‖𝜒𝐸‖𝑝,𝜇1 + 𝑒2‖𝜒𝐸‖𝑝,𝜇2

                = 𝑒1𝜇1(𝐸)
1
𝑝 + 𝑒2𝜇2(𝐸)

1
𝑝 = 𝜇(𝐸)

1
𝑝

 

by Definition 2.2 in (Değirmen & Sağır, 2023). This means 𝜒𝐸 ∈ 𝐿𝔹ℂ
𝑝 (𝜇). 

Now, it will be shown that 𝑣 = 𝑒1𝑣1 + 𝑒2𝑣2 is a 𝔻-signed measure on ℳ. 

It is easy to see that 𝜒∅  is the zero function in 𝐿𝔹ℂ
𝑝 (𝜇)  and so 𝑣(∅) =

𝑇(𝜒∅) . Since 𝑇  is a bicomplex function, 𝑣( ⋅ )  is also a bicomplex 

function. Likewise, let {𝐸𝑛}𝑛∈ℕ be a collection of disjoint sets in ℳ and 

define 

𝐸 =⋃𝐸𝑛

∞

𝑛=1

     and     𝐴𝑛 =⋃𝐸𝑖

𝑛

𝑖=1

. 

Then the sequence {𝐴𝑛}𝑛∈ℕ is increasing and 

⋃𝐴𝑛

∞

𝑛=1

= 𝐸. 

Therefore, one can write 

𝜒𝐴𝑛 = ∑𝜒𝐸𝑘

𝑛

𝑘=1

 

by induction and 

𝑇(𝜒𝐴𝑛) = 𝑒1𝑇1(𝜒𝐴𝑛) + 𝑒1𝑇2(𝜒𝐴𝑛) = 𝑒1∑𝑇1

𝑛

𝑘=1

(𝜒𝐸𝑘) + 𝑒2∑𝑇2

𝑛

𝑘=1

(𝜒𝐸𝑘)

               = 𝑒1∑𝑣1

𝑛

𝑘=1

(𝐸𝑘) + 𝑒2∑𝑣2

𝑛

𝑘=1

(𝐸𝑘) = ∑𝑣

𝑛

𝑘=1

(𝐸𝑘)

 

by the linearity of 𝑇. Since 
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‖𝜒𝐴𝑛 − 𝜒𝐸‖𝑝,𝔻
= 𝑒1‖𝜒𝐴𝑛 − 𝜒𝐸‖𝑝,𝜇1

+ 𝑒2‖𝜒𝐴𝑛 − 𝜒𝐸‖𝑝,𝜇2

                             = 𝑒1 (∫|𝜒𝐴𝑛 − 𝜒𝐸|
𝑝
𝑑𝜇1

Ω

)

1
𝑝

+ 𝑒2 (∫|𝜒𝐴𝑛 − 𝜒𝐸|
𝑝
𝑑𝜇2

Ω

)

1
𝑝

                             = 𝑒1𝜇1(𝐸\𝐴𝑛)
1
𝑝 + 𝑒1𝜇2(𝐸\𝐴𝑛)

1
𝑝 = (𝜇(𝐸) − 𝜇(𝐴𝑛))

1
𝑝

 

and {𝐴𝑛}𝑛∈ℕ  is an increasing sequence, we have 𝜇(𝐸) = lim𝔻
𝑛→∞

𝜇(𝐴𝑛) 

namely 

lim𝔻
𝑛→∞

‖𝜒𝐴𝑛 − 𝜒𝐸‖𝑝,𝔻
= 0. 

Using the 𝔻−continuity of 𝑇 in 𝐿𝔹ℂ
𝑝 (𝜇), it follows that  

lim𝔻
𝑛→∞

𝑇(𝜒𝐴𝑛) = 𝑇(𝜒𝐸) 

and 

  

𝑣(𝐸) = 𝑒1𝑣1(𝐸) + 𝑒2𝑣2(𝐸) = 𝑒1𝑇1(𝜒𝐸) + 𝑒2𝑇2(𝜒𝐸)

          = 𝑒1 lim
𝑛→∞

𝑇1(𝜒𝐴𝑛) + 𝑒2 lim𝑛→∞
𝑇2(𝜒𝐴𝑛) = 𝑙𝑖𝑚𝔻

𝑛→∞
𝑇(𝜒𝐴𝑛) = 𝑙𝑖𝑚𝔻

𝑛→∞
∑𝑣

𝑛

𝑘=1

(𝐸𝑘).
 

This last equality says that 𝑣 is a 𝔻-signed measure. Now, 𝔻 −absolute 

continuity of 𝑣  with respect to 𝜇  will be proved (𝑣 ≪𝔻 𝜇 ) by using 

Theorem 3.12 in (Ghosh & Mondal, 2022). Suppose that 𝐸 ∈ ℳ  with 

𝜇(𝐸) = 0. Then 

‖𝜒𝐸‖𝑝,𝔻 = 𝑒1‖𝜒𝐸‖𝑝,𝜇1 + 𝑒2‖𝜒𝐸‖𝑝,𝜇2

                 = 𝑒1𝜇1(𝐸)
1
𝑝 + 𝑒2𝜇2(𝐸)

1
𝑝 = 𝜇(𝐸)

1
𝑝.

 

This says that 𝜒𝐸  is equal to the zero function in 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇)  and 

𝑇(𝜒𝐸) = 0 , namely 𝑣(𝐸) = 0  and so 𝑣 ≪𝔻 𝜇 . By Theorem 3.16 of 

(Ghosh & Mondal, 2022), the bicomplex version of Lebesgue-Radon-

Nikodym theorem for measures (signed) finite, there is a bicomplex 

measurable function 𝑔 such that 
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𝑣(𝐸) = ∫𝑔𝑑𝜇

𝐸

 

for all 𝐸 ∈ ℳ. Therefore 

∫𝑔𝑑𝜇

𝛺

= ∫(𝑒1𝑔1 + 𝑒2𝑔2)(𝑒1𝑑𝜇1 + 𝑒2𝑑𝜇2)

𝛺

              = 𝑒1 ∫𝑔1𝑑𝜇1
𝛺

+ 𝑒2 ∫𝑔2𝑑𝜇2
𝛺

= 𝑒1𝑣1(𝛺) + 𝑒2𝑣2(𝛺)

              = 𝑣(𝛺) = 𝑇(𝜒𝛺) = 𝑇(1) ≺ ∞𝔻,

 

and 𝑔 ∈ 𝐿𝔹ℂ
1 (Ω,ℳ, 𝜇). Let us check whether 𝑔 meets the hypotheses of 

Lemma 1. Let 𝑠 ∈ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) be a simple ℳ-measurable function with 

the following canonical representation 

𝑠 = 𝑒1𝑠1 + 𝑒2𝑠2 = 𝑒1 ∑ 𝛼𝑘
(1)𝑛

𝑘=1 𝜒𝐸𝑘 + 𝑒2 ∑ 𝛼𝑘
(2)𝑛

𝑘=1 𝜒𝐸𝑘. 

Then, by using the definition of 𝑇, we get 

𝑇(𝑠) = 𝑒1𝑇1(𝑠1) + 𝑒2𝑇2(𝑠2) = 𝑒1𝑇1 (∑𝛼𝑘
(1)

𝑛

𝑘=1

𝜒𝐸𝑘) + 𝑒2𝑇2 (∑𝛼𝑘
(2)

𝑛

𝑘=1

𝜒𝐸𝑘)

= 𝑒1∑𝛼𝑘
(1)

𝑛

𝑘=1

𝑣1(𝐸𝑘) + 𝑒2∑𝛼𝑘
(2)

𝑛

𝑘=1

𝑣2(𝐸𝑘) = 𝑒1∑𝛼𝑘
(1)

𝑛

𝑘=1

∫𝑔1𝑑𝜇1
𝐸𝑘

+ 𝑒2∑𝛼𝑘
(2)

𝑛

𝑘=1

∫𝑔2𝑑𝜇2
𝐸𝑘

= 𝑒1∫𝑔1 (∑𝛼𝑘
(1)

𝑛

𝑘=1

𝜒𝐸𝑘)𝑑𝜇1
𝛺

+ 𝑒2∫𝑔2 (∑𝛼𝑘
(2)

𝑛

𝑘=1

𝜒𝐸𝑘)𝑑𝜇2
𝛺

= 𝑒1∫𝑔1𝑠1𝑑𝜇1
𝛺

+ 𝑒2 ∫𝑔2𝑠2𝑑𝜇2
𝛺

= ∫𝑔𝑠𝑑𝜇

𝛺

.

 

Therefore, we have 

𝑇(𝑠) = ∫𝑔𝑠𝑑𝜇

𝛺

 

for all (step) simple function 𝑠 ∈ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) . As a result of this, 

|𝑇(𝑠)|𝑘 = |∫ 𝑔𝑠𝑑𝜇
𝛺

|
𝑘
. 
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If 𝑀 = ‖𝑇‖, then 𝑀  is 𝔻−finite and it demonstrates that 𝑔  meets the 

criteria of Lemma 1. Therefore we can conclude that 𝑔 ∈ 𝐿𝔹ℂ
𝑞 (Ω,ℳ, 𝜇) 

and 

 ‖𝑔‖𝑞,𝔻 ≼ ‖𝑇‖ = 𝑀.                                                 (1.11) 

Now, we shall demonstrate that 𝑇(𝑓) = ∫ 𝑔𝑓𝑑𝜇
𝛺

 for any 𝑓 ∈

𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇). Let 𝑓 ∈ 𝐿𝔹ℂ

𝑝 (Ω,ℳ, 𝜇) and 𝜀 = 𝑒1𝜀1 + 𝑒2𝜀2 ≻ 0. Since the 

set, obtained from simple functions, 𝕊 = {𝑠 = 𝑠1𝑒1 + 𝑠2𝑒2 | 𝑠1,  𝑠2 ∈ 𝑆} is 

𝔻−dense in 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇), one can find a simple function 𝑠 = 𝑒1𝑠1 +

𝑒2𝑠2 ∈ 𝕊 ⊂ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) such that 

‖𝑓 − 𝑠‖𝑝,𝔻 ≺
𝜀

‖𝑔‖𝑞,𝔻 + ‖𝑇‖ + 1
. 

Then
|𝑇(𝑓) − ∫ 𝑔𝑓𝑑𝜇

𝛺
|
𝑘
= |𝑇(𝑓) − 𝑇(𝑠) + 𝑇(𝑠) − ∫ 𝑔𝑓𝑑𝜇

𝛺
|
𝑘
≼ |𝑇(𝑓) − 𝑇(𝑠)|𝑘 + |∫ 𝑠𝑔𝑑𝜇

𝛺
− ∫ 𝑔𝑓𝑑𝜇

𝛺
|
𝑘

= |𝑇(𝑓 − 𝑠)|𝑘 + |∫ 𝑠𝑔𝑑𝜇
𝛺

− ∫ 𝑔𝑓𝑑𝜇
𝛺

|
𝑘
≼ |𝑇(𝑓 − 𝑠)|𝑘 + ∫ |𝑔|𝑘|𝑠 − 𝑓|𝑘𝑑𝜇𝛺

≼ ‖𝑇‖‖𝑓 − 𝑠‖𝑝,𝔻 + ‖𝑔‖𝑞,𝔻‖𝑓 − 𝑠‖𝑝,𝔻 = ‖𝑓 − 𝑠‖𝑝,𝔻(‖𝑇‖ + ‖𝑔‖𝑞,𝔻)

≼ ‖𝑓 − 𝑠‖𝑝,𝔻(‖𝑇‖ + ‖𝑔‖𝑞,𝔻 + 1) ≺ 𝜀.

 

Since 𝜀 is arbitrary, we can conclude that 

𝑇(𝑓) = ∫𝑔𝑓𝑑𝜇

𝛺

 

for all 𝑓 ∈ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) . Finally by using the Hölder’s inequality 

(Theorem 1), we can write |𝑇(𝑓)|𝑘 ≼ ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻 where 

‖𝑇‖ ≼ ‖𝑔‖𝑞,𝔻.                                                       (1.12) 

Now from (1.11) and (1.12) we have ‖𝑇‖ = ‖𝑔‖𝑞,𝔻, which is done for the 

Case 1. 

Case 2. 𝜇(Ω) = ∞. Under the 𝜎-finiteness of 𝜇, there exists a collection of 

measurable sets {Ω𝑛}𝑛∈ℕ  such that Ω = ⋃ Ω𝑛
∞
𝑛=1 , 𝛺𝑛 ⊂ 𝛺𝑛+1  and 

𝜇(𝛺𝑛) ≺ ∞𝔻  for all 𝑛 ∈ ℕ . Therefore, Case 1 may be applied to the 

measure space (𝛺𝑛,ℳ ∩ 𝛺𝑛 , 𝜇𝑛) where 𝜇𝑛 is the restriction of 𝜇 to ℳ∩
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𝛺𝑛. Now let 𝑇𝑛 = 𝑇|𝐿𝔹ℂ
𝑝
(𝜇𝑛)

. Then, there exists 𝑔𝑛 ∈ 𝐿𝔹ℂ
𝑞 (𝜇𝑛) for all 𝑛 ∈

ℕ such that 

 𝑇𝑛(ℎ) = ∫ ℎ𝑔𝑛𝑑𝜇𝑛𝛺𝑛
                                                (1.13) 

for all ℎ ∈ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) which vanishes outside 𝛺𝑛 by Case 1. Also 

 ‖𝑇‖ ≽ ‖𝑇𝑛‖ = ‖𝑔𝑛‖𝑞,𝔻.                                      (1.14) 

If we define 

�̃�𝑛(𝑥) = {
𝑔𝑛(𝑥), 𝑥 ∈ 𝛺𝑛
0, 𝑥 ∉ 𝛺𝑛

 

then, the integral in (1.13) can be written as 

 𝑇𝑛(ℎ) = ∫ ℎ�̃�𝑛𝑑𝜇𝑛𝛺
                                             (1.15) 

for all ℎ ∈ 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇)  which vanishes outside 𝛺𝑛 . Since �̃�𝑛+1 

restricted to 𝛺𝑛 have the same properties as �̃�𝑛 under the uniqueness, we 

have �̃�𝑛+1 = �̃�𝑛  in 𝛺𝑛 . Now define 𝑔(𝑥) = 𝑔𝑛(𝑥) if 𝑥 ∈ Ω𝑛 . Since 

|�̃�𝑛(𝑥)|𝑘 ≼ |�̃�𝑛+1(𝑥)|𝑘 for all 𝑥 ∈ 𝛺 and  

lim𝔻
𝑛→∞

�̃�𝑛(𝑥) = 𝑔(𝑥), 

we can say that 

∫|𝑔|𝑘
𝑞
𝑑𝜇

𝛺

= lim𝔻
𝑛→∞

∫|�̃�𝑛|𝑘
𝑞
𝑑𝜇

𝛺

≼ ‖𝑇‖𝑞 

by the bicomplex monotone convergence theorem in (Ghosh & Mondal, 

2022). This implies that 𝑔 ∈ 𝐿𝔹ℂ
𝑞 (Ω,𝔐, 𝜇) and  

 ‖𝑇‖ ≽ ‖𝑔‖𝑞,𝔻.                                         (1.16) 

Let 𝑓 be any element of 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) and 𝑓𝑛 = 𝑓 ⋅ 𝜒𝛺𝑛. Then 𝑓𝑛 vanishes 

outside 𝛺𝑛 and the pointwise convergence 𝑓𝑛
𝔻
→ 𝑓  exists in 𝛺. It is easy to 

see that |𝑓𝑛 − 𝑓|𝑘 ≼ ||𝑓|𝑘  and so |𝑓𝑛 − 𝑓|𝑘
𝑝
≼ ||𝑓|𝑘

𝑝
. By the bicomplex 

Dominated convergence theorem, we have 
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lim𝔻
𝑛→∞

∫|𝑓𝑛 − 𝑓|𝑘
𝑝
𝑑𝜇

𝛺

= 0. 

The 𝔻 − continuity of 𝑇  implies that 𝑇(𝑓𝑛)
𝔻
→ 𝑇(𝑓)  when 𝑛 → ∞ . 

Moreover, we have |𝑓𝑛 ⋅ 𝑔|𝑘 = |𝑓𝑛|𝑘|𝑔|𝑘 ≼ |𝑓|𝑘|𝑔|𝑘 = |𝑓 ⋅ 𝑔|𝑘 ,  𝑓 ⋅ 𝑔 ∈

𝐿𝔹ℂ
1 (Ω,ℳ, 𝜇) and lim𝔻

𝑛→∞
𝑓𝑛𝑔 = 𝑓𝑔. If we apply the bicomplex Dominated 

convergence theorem once more, we get 

∫𝑓𝑔𝑑𝜇

𝛺

= lim𝔻
𝑛→∞

∫𝑓𝑛𝑔𝑑𝜇

𝛺

= lim𝔻
𝑛→∞

∫𝑓𝜒𝛺𝑛𝑔𝑑𝜇

𝛺

                = lim𝔻
𝑛→∞

∫(𝑓𝜒𝛺𝑛)(𝑔𝜒𝛺𝑛)𝑑𝜇

𝛺

= lim𝔻
𝑛→∞

∫(𝑓𝑛)�̃�𝑛𝑑𝜇

𝛺

                = lim𝔻
𝑛→∞

𝑇(𝑓𝑛) = 𝑇(𝑓).

 

Thus, we get (1.9) and applying the Hölder’s inequality once more, 

|𝑇(𝑓)|𝑘 ≼ ‖𝑓‖𝑝,𝔻‖𝑔‖𝑞,𝔻 

can be written. This means ‖𝑇‖ ≼ ‖𝑔‖𝑞,𝔻 , and so ‖𝑇‖ = ‖𝑔‖𝑞,𝔻  by 

(1.16), which ends the proof. 

Corollary 1. The space 𝐿𝔹ℂ
𝑝 (Ω,ℳ, 𝜇) with 1 < 𝑝 < ∞ is reflexive. 
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Introduction 

In recent years, a novel number system known as bicomplex 

numbers has emerged as an expansion of the existing system of 

complex numbers. The book written by Price (Price, 1991) is the 

foremost recommended beginning work for bicomplex numbers. 

Next, we recommend books (Alpay & et al., 2014) and (Luna-

Elizarraras & et al., 2015) that provide detailed explanations of the 
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fundamental frameworks of bicomplex numbers, which concentrate 

on functional analysis. 

The following fundamental details concerning bicomplex 

numbers are derived from books (Alpay & et al., 2014; Luna-

Elizarraras & al., 2015; Price, 1991). Let us begin by examining two 

separate imaginary numbers, 𝑖  and 𝑗 , where  𝑖2 = 𝑗2 = −1 . This 

results in the creation of two sets, ℂ(𝑖) and ℂ(𝑗), which are exactly 

the same as set ℂ. Additionally, let us take an imaginary number, 

denoted as 𝑘, which is the result of multiplying these two imaginary 

numbers and possesses the following characteristics: 

𝑖𝑗 = 𝑗𝑖 = 𝑘 

𝑖𝑘 = 𝑘𝑖 = −𝑗 

𝑗𝑘 = 𝑘𝑗 = −𝑖 

𝑘2 = 1. 

Consequently, the set of bicomplex numbers denoted by 𝔹ℂ is 

given as  

𝔹ℂ = {𝑧 + 𝑗𝑤|𝑧,𝑤 ∈ ℂ(𝑖)}. 

The set 𝔹ℂ can also be written as  

𝔹ℂ = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}. 

Addition and multiplication operations are defined in the following 

manners:  

(𝑧1 + 𝑗𝑤1) + (𝑧2 + 𝑗𝑤2) = (𝑧1 + 𝑧2) + 𝑗(𝑤1 + 𝑤2) 

and  

(𝑧1 + 𝑗𝑤1)(𝑧2 + 𝑗𝑤2) = (𝑧1𝑤1 −𝑤1𝑤2) + 𝑗(𝑧1𝑤2 +𝑤1𝑧2). 

By undertaking these operations, the set 𝔹ℂ  improves into a 

commutative ring and, as a result, becomes a module on itself. A 

valuable subset of 𝔹ℂ  is denoted by 𝔻 , which is called the 

hyperbolic numbers set, and is properly described as  

𝔻 = {𝑥 + 𝑘𝑦|𝑥, 𝑦 ∈ ℝ} 
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by replacing 𝑧  and 𝑤  with 𝑥  and 𝑖𝑦  in the description of 𝔹ℂ , 

whenever 𝑥, 𝑦 ∈ ℝ. Now, let us examine two complex numbers, 

𝑒1 =
1+𝑖𝑗

2
 and 𝑒2 =

1−𝑖𝑗

2
. 

These particular numbers possess the following properties, which 

are readily apparent: 

𝑒1𝑒2 = 0, 𝑒1 + 𝑒2 = 1, 𝑒1𝑒1 = 𝑒1, 𝑒2𝑒2 = 𝑒2. 

Both the numbers 𝑒1 and 𝑒2 belong to the set of hyperbolic numbers 

𝔻. They constitute the idempotent basis of bicomplex numbers. A 

bicomplex number 𝑧 + 𝑗𝑤 can be expressed in a unique form: 

𝑧 + 𝑗𝑤 = 𝑒1𝑧1 + 𝑒2𝑧2, 

where 𝑧1 = 𝑧 − 𝑖𝑤 , 𝑧2 = 𝑧 + 𝑖𝑤 ∈ ℂ(𝑖) . The given mathematical 

expression indicates the idempotent representation of bicomplex 

numbers. Therefore, it ensures that every hyperbolic number 

possesses an idempotent representation, that can be expressed as: 

𝑥 + 𝑘𝑦 = 𝑒1𝑎1 + 𝑒2𝑎2, 

where 𝑎1 = 𝑥 + 𝑦 , 𝑎2 = 𝑥 − 𝑦 ∈ ℝ. The non-negative hyperbolic 

numbers are represented as 𝔻+ and given by  

𝔻+ = {𝑒1𝑎1 + 𝑒2𝑎2|𝑎1, 𝑎2 ≥ 0}. 

Consider 𝜅, 𝜇 ∈ 𝔻. The hyperbolic numbers are equipped with a 

partial order relation denoted by ≾, which is given as:  

𝜅 ≾ 𝜇 if and only if 𝜇 − 𝜅 ∈ 𝔻+. 

Moreover, we write  

𝜅 ≺ 𝜇 if and only if 𝜅 ≾ 𝜇 but 𝜅 ≠ 𝜇. 

To find out more concerning the features of the partial order relation 

≾, please consult Section 2.6.2 of  (Luna-Elizarraras & et al., 2015). 

Let us now provide a brief overview of 𝔻-boundedness as presented 

in Section 2.6.3 of (Luna-Elizarraras & et al., 2015). Let 𝑋 ⊂ 𝔻. 

Assuming 𝑋 possesses a 𝔻-upper bound (or a 𝔻-lower bound) 𝑙, it 
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implies that for any 𝑥 ∈ 𝑋, 𝑥 can be compared to 𝑙 and 𝑥 ≾ 𝑙 (or 𝑙 ≾
𝑥). The set 𝑋 can be described as 𝔻-bounded if it is 𝔻-bounded both 

from above and from below. If 𝑋 is a set that has a 𝔻-upper bound, 

we determine the concept of its 𝔻-supremum, represented as 

sup
𝔻
𝑋, 

as the least 𝔻-upper bound for 𝑋 . Similarly, we establish its 𝔻-

infimum 

inf
𝔻
𝑋, 

as the greatest 𝔻-lower bound for X. In this context, the least 𝔻-

upper bound denotes  

sup
𝔻
𝑋 ≾ 𝑙 

for any 𝔻-upper bound 𝑙, even though not all 𝔻-upper bounds are 

comparable to one another. Likewise, the greatest 𝔻-lower bound 

signifies that 

𝑙 ≾ inf
𝔻
𝑋 

for any 𝔻-lower bound 𝑙, even though not all 𝔻-lower bounds are 

comparable to one another. Consider the sets 

𝑋1 = {𝑥1: 𝑥1𝑒1 + 𝑥2𝑒2 ∈ 𝑋} 

and 

𝑋2 = {𝑥2: 𝑥1𝑒1 + 𝑥2𝑒2 ∈ 𝑋}. 

If 𝑋 is 𝔻-bounded from above, then  

sup
𝔻
𝑋 = sup𝑋1𝑒1 + sup𝑋2𝑒2. 

If 𝑋 is 𝔻-bounded from below, then  

inf
𝔻
𝑋 = inf𝑋1𝑒1 + inf𝑋2𝑒2. 

Additionally, the following items satisfy: 
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(i) If both 𝑋 and 𝑌 have a 𝔻-lower bound, then 𝑋 + 𝑌 also has 

a 𝔻-lower bound and 

inf
𝔻
(𝑋 + 𝑌) = inf

𝔻
𝑋 + inf

𝔻
𝑌. 

(ii) If both 𝑋 and 𝑌 have a 𝔻-upper bound, then 𝑋 + 𝑌 also has 

a 𝔻-upper bound and  

sup
𝔻
(𝑋 + 𝑌) = sup

𝔻
𝑋 + sup

𝔻
𝑌. 

For a bicomplex number 𝑧 + 𝑗𝑤 , |z + jw|𝑘  represents the 

hyperbolic modulus and is indicated by  

|𝑧 + 𝑗𝑤|𝑘
2 = (𝑧 + 𝑗𝑤)(𝑧 − 𝑗𝑤). 

By representing the complex number 𝑧 + 𝑗𝑤 in idempotent form, we 

obtain 

|𝑧 + 𝑗𝑤|𝑘 = |𝑒1𝑧1 + 𝑒2𝑧2|𝑘 = 𝑒1|𝑧1| + 𝑒2|𝑧2|. (1) 

Modules are defined as algebraic structures that are constructed 

over rings, similar to how vector spaces are constructed over fields. 

A module 𝑋 is referred to as a 𝔹ℂ-module if it is defined over the 

ring 𝔹ℂ (see (Gervais Lavoie & et al., 2011; Rochon & Tremblay, 

2006)). Conside 𝐸  be a 𝔹ℂ-module. Let us take 𝑢, 𝑣 ∈ 𝐸  and 𝜆 ∈
𝔹ℂ. A function ‖. ‖𝔻: 𝐸 → 𝔻+ is considered to be a hyperbolic (D-

valued) norm on E if it satisfies the conditions listed below: 

(i) ‖𝑢‖𝔻 = 0 if and only if 𝑢 = 0. 

(ii) ‖𝜆𝑢‖𝔻 = |𝜆|𝑘‖𝑢‖𝔻. 

(iii) ‖𝑢 + 𝑣‖𝔻 ≾ ‖𝑢‖𝔻 + ‖𝑣‖𝔻.  

The hyperbolic modulus |. |𝑘  with representation (1) refers to 

the hyperbolic (𝔻-valued) norm of 𝑧 + 𝑗𝑤 ∈ 𝔹ℂ. Let 𝜐, 𝜂 ∈ 𝔹ℂ and 

𝛾 ∈ 𝔻+. The following characteristics are thereby associated with 

the hyperbolic (𝔻 -valued) norm |. |𝑘: 

(i) |𝜐|𝑘 = 0 if and only if 𝜐 = 0. 

(ii) |𝜐𝜂|𝑘 = |𝜐|𝑘|𝜂|𝑘. 
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(iii) |𝜐 + 𝜂|𝑘 ≾ |𝜐|𝑘 + |𝜂|𝑘. 

(iv) |𝛾|𝑘 = 𝛾 

(v) |𝛾𝜐|𝑘 = 𝛾|𝜐|𝑘 

Consider 𝑋 as a 𝔹ℂ-module. Therefore, we possess  

𝑋 = 𝑒1𝑋1 + 𝑒2𝑋2 

such that 𝑋1 = 𝑒1𝑋  and 𝑋2 = 𝑒2𝑋  are complex vector spaces and 

also 𝔹ℂ-modules. The equation presented here is commonly referred 

to as the idempotent decomposition of 𝑋 . Consequently, every 𝑥 

belonging to the set 𝑋  can be expressed uniquely as 𝑥 = 𝑒1𝑥1 +
𝑒2𝑥2 , where 𝑥1 ∈ 𝑋1  and 𝑥2 ∈ 𝑋2  (see (Gervais Lavoie et al., 

2010)). Let 𝑋1 and 𝑋2 be normed spaces equipped with norms ‖. ‖1 
and ‖. ‖2, respectively. The 𝔹ℂ-module can be equipped with the 

hyperbolic (𝔻-valued) norm determined by  

‖𝑥‖𝔻 = 𝑒1‖𝑥1‖1 + 𝑒2‖𝑥2‖2. 

 Consider 𝑇  is a 𝔹ℂ-module with the hyperbolic (𝔻-valued) 

norm ‖. ‖𝔻 . A sequence (𝑡𝑛) belonging to 𝑇  converges to 𝑡0 ∈ 𝑇 

concerning the hyperbolic (𝔻-valued) norm ‖. ‖𝔻 if for every 0 ≺ 𝜖 
there exists 𝑛0 ∈ ℕ such that ‖𝑡𝑛 − 𝑡0‖𝔻 ≺ 𝜖 for all 𝑛 ≥ 𝑛0. In this 

study, the term used for describing this convergence is 𝔻 -

convergence (or 𝔻-converges). Also, the term 𝔻-divergent will be 

used for 𝔻-non-convergent sequences. 

Consider 𝑇 is a 𝔹ℂ-module with hyperbolic (𝔻-valued) norm 
‖. ‖𝔻 . A sequence (𝑡𝑛)  belonging to 𝑇  is Cauchy sequence 

concerning the hyperbolic (𝔻-valued) norm ‖. ‖𝔻 if for every 0 ≺ 𝜖 
there exists 𝑛0 ∈ ℕ such that ‖𝑡𝑛 − 𝑡𝑚‖𝔻 ≺ 𝜖 for all 𝑛,𝑚 ≥ 𝑛0. If 

every Cauchy sequence in 𝑋  with respect to the hyperbolic (𝔻-

valued) norm ‖. ‖𝔻 𝔻-converges to 𝑡0 ∈ 𝑋, then we say that the 𝔹ℂ-

module 𝑋  is complete with respect to the hyperbolic (𝔻-valued) 

norm ‖. ‖𝔻. 

A bicomplex Banach module is defined as a complete real-

valued normed or hyperbolic (𝔻 -valued) normed 𝔹ℂ  -module. 
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(Kumar & et al., 2011; Gervais Lavoie & et al. 2010; Gervais Lavoie 

& et al., 2011; Kumar & et al., 2016). 

The Lebesgue sequence spaces are a family of sequence spaces 

that are important in functional analysis and measure theory. They 

are named after the French mathematician Henri Lebesgue, who 

made significant contributions to both fields. These spaces are 

defined as the collection of all sequences of complex numbers that 

satisfy certain convergence properties. The weighted Lebesgue 

sequence spaces are a class of function spaces that generalize the 

classical Lebesgue sequence spaces. These spaces have been 

extensively studied in functional analysis and have applications in 

various areas of mathematics and engineering. In a recent study, 

(Güngör, 2020) examined the geometric characteristics of non-

Newtonian Lebesgue sequence spaces. Also, (Oğur, 2019), (Sağır & 

Alşalvar, 2019) pertain to the examination of the geometric 

characteristics of the weighted Lebesgue function and sequence 

space, respectively. Furthermore, there have been new investigations 

into bicomplex function and sequence Lebesgue spaces, which can 

be seen as extensions of Lebesgue function and sequence spaces. 

There is a significant amount of research in the literature that 

examines the geometric characteristics of bicomplex Lebesgue 
function spaces and Lebesgue sequence spaces. (Değirmen & Sağır, 

2023) and (Toksoy & Sağır, 2023) are among the notable examples. 

Besides, (Değirmen & Sağır, 2021) examined the 𝐷 −topological 

duals of bicomplex Lebesgue sequence spaces with hyperbolic (𝔻-

valued) norm. 

Recent work (Sağır & Güngör, 2023) introduces the weighted 

bicomplex sequence spaces 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  as a generalization of the 

bicomplex Lebesgue sequence spaces 𝑙𝑝
𝑘(𝔹ℂ) with hyperbolic (𝔻-

valued) norm, where 𝛼 is a bicomplex weighted sequence. Initially, 

this study will address the findings of earlier studies, mostly focusing 

on the results of studies (Sağır & Güngör, 2023) and (Değirmen & 

Sağır, 2023), which will serve as the foundation for the main portion 

of this study. 
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To begin, let us summarize some valuable observations gained 

from the findings of the study (Değirmen & Sağır, 2023). 

 

Definition 1.1. Consider w, 𝜆 ∈ 𝔹ℂ and w ≠ 0. The map given 

by w𝜆 = e𝜆Lnw is referred to as the principal value of the bicomplex 

power w𝜆. Observe that for 𝜆 = 𝜆1e1 + 𝜆2e2 and w= 𝑤1e1 +w2e2 

w𝜆 = e𝜆Lnw = 𝑤1
 𝜆1e1 +w2

 𝜆2e2 

Particularly if 𝜆 ∈ ℝ, then we have 

w𝜆 = 𝑤1
𝜆𝑒1 +𝑤2

𝜆𝑒2. 

Lemma 1.2. Consider p ∈ ℝ with 2 ≤ p < ∞. Assume that u 

and v are any two bicomplex numbers. Then we have  

|u + v|k
p
+ |u − v|k

p
≾ 2p−1(|u|k

p
+ |v|k

p). 

Definition 1.3. Consider A is a subset of a 𝔹ℂ-module E. Then 

A is described as a 𝔹ℂ-convex set if u, v ∈ E and γ ∈ 𝔻+ satisfying 

0 ≾ γ ≾ 1 implies that γu + (1 − γ)v ∈ A.  

Let us briefly outline the significant findings derived from 

(Toksoy and Sağır, 2023). 

Definition 1.4. Assume that B is a bicomplex Banach module 

with the hyperbolic (𝔻-valued) norm ‖. ‖B,𝔻. Then B is described as 

𝔹ℂ -strictly convex, if ‖γu + (1 − γ)v‖B,𝔻 ≺ 1  for all 0 ≾ γ ≾ 1 

with γ ∈ 𝔻+, u, v ∈ B with ‖u‖B,𝔻 = ‖v‖B,𝔻 = 1 and u ≠ v.  

Definition 1.5. Assume that B is a bicomplex Banach module 

with the hyperbolic (𝔻-valued) norm ‖. ‖B,𝔻. Then B is described as 

𝔹ℂ -uniformly convex, if  for any ϵ ∈ 𝔻+  with 0 ≺ ϵ ≾ 2 , the 

conditions ‖u‖B,𝔻 ≾ 1 , ‖v‖B,𝔻 ≾ 1 , ‖u − v‖B,𝔻 ≿ ϵ  imply there 

exists a δ = δ(ϵ) ∈ 𝔻+\{0}  such that ‖
u+v

2
‖
B,𝔻

≺ 1 − δ  for all 

u, v ∈ B.  
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Lemma 1.6. Consider p ∈ ℝ  with p ∈ (1,2]  and q =
p

p−1
. 

Assume that u and v are any two bicomplex numbers. Then we have 

|u + v|k
q
+ |u − v|k

q
≾ 2(|u|k

p
+ |v|k

p)
q−1

. 

Let us present a significant theorem provided in (Değirmen & 

Sağır, 2023). Also, for the definition and properties of the bicomplex 

𝔹ℂ −modules 𝑙𝑝
𝑘(𝔹ℂ), see (Değirmen & Sağır, 2023). 

Theorem 1.7. Let 1 < p < ∞ . Then lp
k(𝔹ℂ)  is 𝔹ℂ -strictly 

convex.  

In the following, we briefly describe the properties and 

definitions of the weighted bicomplex sequence spaces 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) 

that have been extensively discussed in (Sağır & Güngör, 2023). 

Definition 1.8. A bicomplex weighted sequence α = {α(n)}n=0
∞  

is a sequence of positive hyperbolic numbers with α(0) = e1 + e2 = 

1, ∑∞n=0 α(n)  is 𝔻 -divergent and α(n) ≳ 1 .We define the sets 

lp,α
k (𝔹C) for 0 < p < ∞ and l∞,α

k (𝔹ℂ) utilizing the hyperbolic (𝔻-

valued) norm |. |k in the following manner:  

𝑙𝑝,𝛼
𝑘 (𝔹ℂ):= {𝑢 = (𝑢𝑛)

∈ 𝑠(𝔹ℂ):∑

∞

𝑛=0

|𝑢𝑛|𝑘
𝑝𝛼(𝑛) 𝔻 − converges} , 0 < 𝑝

< ∞ 

and  

𝑙∞,𝛼
𝑘 (𝔹ℂ):= {𝑢 = (𝑢𝑛)

∈ 𝑠(𝔹ℂ): sup
𝔻
{|𝑢𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ} is finite}, 
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where 𝑠(𝔹ℂ) is the 𝔹ℂ −module of all bicomplex sequences. Let 

𝑢𝑛 = 𝑢𝑛1𝑒1 + 𝑢𝑛2𝑒2, 𝛼(𝑛) = 𝛼1(𝑛)𝑒1 + 𝛼2(𝑛)𝑒2 . Then the 

complex series  

∑

∞

𝑛=0

|𝑢𝑛1|
𝑝𝛼1(𝑛),∑

∞

𝑛=0

|𝑢𝑛2|
𝑝𝛼2(𝑛) 

are convergent and so the sequences {𝑢𝑛1}𝑛=0
∞  and {𝑢𝑛2}𝑛=0

∞  belong 

to the weighted sequence spaces of complex numbers 𝑙𝑝,𝛼1 and 𝑙𝑝,𝛼2 

respectively. Thus, 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  consists of all bicomplex sequences 

𝑢 = (𝑢𝑛) = (𝑢𝑛1𝑒1 + 𝑢𝑛2𝑒2)  such that 𝑢1 = (𝑢𝑛1) ∈ 𝑙𝑝,𝛼1  and 

𝑢2 =  (𝑢𝑛2) ∈ 𝑙𝑝,𝛼2  where 𝛼1 = 𝛼1(𝑛), 𝛼2 = 𝛼2(𝑛)  are complex 

weighted sequences. Therefore 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) can be written as  

𝑙𝑝,𝛼
𝑘 (𝔹ℂ) = 𝑙𝑝,𝛼1𝑒1 + 𝑙𝑝,𝛼2𝑒2 

Consider 𝑢 = (𝑢𝑛) = (𝑢𝑛1𝑒1 + 𝑢𝑛2𝑒2) ∈ 𝑙∞,𝛼
𝑘 (𝔹ℂ) . Then the 

sequences {𝑢𝑛1}𝑛=0
∞  and {𝑢𝑛2}𝑛=0

∞  belong to the weighted bounded 

sequence spaces of complex numbers 𝑙∞,𝛼1 and 𝑙∞,𝛼2 respectively. 

As a result, 𝑙∞,𝛼
𝑘 (𝔹ℂ)  consists of all 𝔻 -bounded sequences 𝑢 =

(𝑢𝑛) = (𝑢𝑛1𝑒1 + 𝑢𝑛2𝑒2)  such that 𝑢1 = (𝑢𝑛1) ∈ 𝑙∞,𝛼1  and 𝑢2 =

(𝑢𝑛2) ∈ 𝑙∞,𝛼2. Hence 𝑙∞,𝛼
𝑘 (𝔹ℂ) can be written as 

𝑙∞,𝛼
𝑘 (𝔹ℂ) = 𝑙∞,𝛼1𝑒1 + 𝑙∞,𝛼2𝑒2. 

Proposition 1.9. The set l∞,α
k (𝔹ℂ) is a 𝔹ℂ-module under usual 

addition operation in sequences and bicomplex scalar multiplication.  

Remark 1.10. Let {α(n)}n=0
∞  be a  bicomplex weighted 

sequence. Consider u = (un) ∈ l∞,α
k (𝔹ℂ) , where u = (un) =

(un1e1 + un2e2) and {α(n)}n=0
∞  are bicomplex weighted sequences. 

Clearly, the weighted spaces l∞,α1 and l∞,α2 are normed spaces with 

norms 

‖𝑢1‖∞,𝛼1 = sup{|𝑢𝑛1|𝛼1(𝑛): 𝑛 ∈ ℕ} 

and 
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‖𝑢2‖∞,𝛼2 = sup{|𝑢𝑛2|𝛼2(𝑛): 𝑛 ∈ ℕ} 

respectively. Hence, we can endow the 𝔹ℂ-module 𝑙∞,𝛼
𝑘 (𝔹ℂ) with 

hyperbolic (𝔻-valued) norm that is given by 

∥ 𝑢 ∥𝔻,𝑙∞,𝛼(𝔹ℂ)= ‖𝑢1‖∞,𝛼1𝑒1 + ‖𝑢2‖∞,𝛼2𝑒2. 

Let us take the function ∥. ∥𝔻,𝑙∞,𝛼𝑘 (𝔹ℂ) that is defined as 

∥ 𝑢 ∥𝔻,𝑙∞,𝛼𝑘 (𝔹ℂ)= sup
𝔻
{|𝑢𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ}. 

Therefore, we have 

∥ 𝑢 ∥𝔻,𝑙∞,𝛼𝑘 (𝔹ℂ)=∥ 𝑢 ∥𝑙∞,𝛼
𝑘 (𝔹ℂ) (2) 

for all 𝑢 ∈ 𝑙∞,𝛼
𝑘 (𝔹ℂ). Also, we can write 

∥ 𝑢 ∥𝑙∞,𝛼
𝑘 (𝔹ℂ)= ‖𝛼1𝑢1‖∞𝑒1 + ‖𝛼2𝑢2‖∞𝑒2 

Remark 1.11. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. For 0 < p < ∞, we have 

𝑙𝑝,𝛼
𝑘 (𝔹ℂ) = 𝑙𝑝,𝛼1𝑒1 + 𝑙𝑝,𝛼2𝑒2 

where 𝛼(𝑛) = 𝛼1(𝑛)𝑒1 + 𝛼2(𝑛)𝑒2 , 𝑢𝑛 = 𝑢𝑛1𝑒1 + 𝑢𝑛2𝑒2  such that 

𝑙𝑝,𝛼𝑖 are complex weighted Lebesgue sequence spaces in sense  

𝑙𝑝,𝛼𝑖 = {𝑢𝑖 = (𝑢𝑛𝑖) ∈ 𝑠(ℂ):∑

∞

𝑛=0

|𝑢𝑛𝑖|
𝑝𝛼𝑖(𝑛) < ∞, 𝑖 = 1,2. } 

 Obviously, if 𝑢 = (𝑢𝑛) ∈ 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) , then (𝑢𝑛𝛼(𝑛)

1

𝑝) ∈

𝑙𝑝
𝑘(𝔹ℂ).  

Proposition 1.12. Let {α(n)}n=0
∞  be a  bicomplex weighted 

sequence. Then the set lp,α
k (𝔹ℂ) for 0 < p < ∞ is a 𝔹ℂ-submodule 

of s(𝔹ℂ). 

Remark 1.13. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. Consider u ∈ lp,α
k (𝔹ℂ)  with u = (un) = (un1e1 +
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un2e2) , α = (α(n)) = (α1(n)e1 + α2(n)e2), for 0 < p < ∞. We 

may write 

𝑙𝑝,𝛼
𝑘 (𝔹ℂ) = 𝑙𝑝,𝛼1𝑒1 + 𝑙𝑝,𝛼2𝑒2. 

Obviously, the weighted Lebesgue sequence spaces 𝑙𝑝,𝛼1 and 𝑙𝑝,𝛼2 

are normed spaces with 

‖𝑢𝑖‖𝑙𝑝,𝛼𝑖
= (∑

∞

𝑛=0

|𝑢𝑛𝑖|
𝑝𝛼𝑖(𝑛))

1/𝑝

, 𝑖 = 1,2,

for 1 ≤ 𝑝 < ∞. 

Therefore, we can endow the 𝔹ℂ-module 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) with hyperbolic 

(𝔻-valued) norm that is given by 

∥ 𝑢 ∥𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ)= ‖𝑢1‖𝑙𝑝,𝛼1𝑒1 +
‖𝑢2‖𝑙𝑝,𝛼2𝑒2 

where 𝑢1 = (𝑢𝑛1), 𝑢2 = (𝑢𝑛2), 𝛼1 = 𝛼1(𝑛), 𝛼2 = 𝛼2(𝑛) . Let us 

take the function ∥ 𝑢 ∥𝑙𝑝,𝛼𝑘 (𝔹ℂ) defined as 

∥ 𝑢 ∥𝑙𝑝,𝛼𝑘 (𝔹ℂ)= (∑

∞

𝑛=0

|𝑢𝑛|𝑘
𝑝𝛼(𝑛))

1/𝑝

. 

Hence, we obtain  

∥ 𝑢 ∥𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ)=∥ 𝑢 ∥𝑙𝑝,𝛼𝑘 (𝔹ℂ) (3) 

for all 𝑢 ∈ 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  

Let 1 ≤ 𝑝 < ∞ . Let us take 𝛼 = 𝛼1𝑒1 + 𝛼2𝑒2 . Given that 

spaces 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) and 𝑙∞,𝛼

𝑘 (𝔹ℂ) can be written as  

𝑙𝑝,𝛼
𝑘 (𝔹ℂ) = 𝑙𝑝,𝛼1𝑒1 + 𝑙𝑝,𝛼2𝑒2 

and 

𝑙∞,𝛼
𝑘 (𝔹ℂ) = 𝑙∞,𝛼1𝑒1 + 𝑙∞,𝛼2𝑒2, 

respectively, where 𝑙𝑝,𝛼𝑖  and 𝑙∞,𝛼𝑖  are Banach spaces for 𝑖 = 1,2, 

and equations (2) and (3) are considered, it is clear that normed 
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spaces 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) and 𝑙∞,𝛼

𝑘 (𝔹ℂ) are the bicomplex Banach modules 

with hyperbolic (𝔻-valued) norms from Theorem 3.5 in (Kumar & 

Singh, 2015) and Theorem 1.1 in (Kumar & et al., 2016). 

Let {𝛼(𝑛)}𝑛=0
∞  be a bicomplex weighted sequence. This work 

demonstrates the 𝔹ℂ-convexity of 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) and 𝑙∞,𝛼

𝑘 (𝔹ℂ) for 1 ≤

𝑝 < ∞. It is asserted that 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) is 𝔹ℂ-strictly convex for 1 <

𝑝 < ∞, and 𝔹ℂ-uniformly convex for 2 ≤ 𝑝 < ∞. The 𝔻-Hölder’s 

and 𝔻-Minkowski inequalities were stated for the case of 𝑝 ∈ (0,1). 
Furthermore, it is established that 𝑙𝑝

𝑘(𝔹ℂ)  and 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  are 𝔹ℂ -

uniformly convex for, 1 < 𝑝 < 2. 

Main Results 

Theorem 2.1. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence and 1 ≤ p < ∞ . Then lp,α
k (𝔹ℂ)  and l∞,α

k (𝔹ℂ)  are 𝔹ℂ -

convex.  

 

Proof. In the beginning, let us demonstrate the 𝔹ℂ-convexity of 

𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  for 1 ≤ 𝑝 < ∞ . Let 𝜁 = (𝜁𝑛), 𝜂 = (𝜂𝑛) ∈ 𝑙𝑝,𝛼

𝑘 (𝔹ℂ)  and 

𝛾 ∈ 𝔻+  where 0 ≾ 𝛾 ≾ 1 . Then ∑∞𝑛=0 |𝜁𝑛|𝑘
𝑝𝛼(𝑛)  and 

∑∞𝑛=0 |𝜂𝑛|𝑘
𝑝𝛼(𝑛) coverges. Also, we have  

|𝛾𝜁𝑛 + (1 − 𝛾)𝜂𝑛|𝑘
𝑝𝛼(𝑛) = |(𝛾𝜁𝑛 + (1 − 𝛾)𝜂𝑛)𝛼

1/𝑝(𝑛)|
𝑘

𝑝
 

≾ (|𝛾𝜁𝑛𝛼
1/𝑝(𝑛)|

𝑘
+ |(1 − 𝛾)𝜂𝑛𝛼

1/𝑝(𝑛)|
𝑘
)
𝑝

 

≾ (2sup
𝔻
{|𝛾𝜁𝑛𝛼

1/𝑝(𝑛)|
𝑘
, |(1 − 𝛾)𝜂𝑛𝛼

1/𝑝(𝑛)|
𝑘
})
𝑝

 

= 2𝑝sup
𝔻
{|𝛾𝜁𝑛𝛼

1/𝑝(𝑛)|
𝑘

𝑝
, |(1 − 𝛾)𝜂𝑛𝛼

1/𝑝(𝑛)|
𝑘

𝑝
} 

= 2𝑝sup
𝔻
{𝛾𝑝|𝜁𝑛𝛼

1/𝑝(𝑛)|
𝑘

𝑝
, (1 − 𝛾)𝑝|𝜂𝑛𝛼

1/𝑝(𝑛)|
𝑘

𝑝
} 

≾ 2𝑝 (𝛾𝑝|𝜁𝑛𝛼
1/𝑝(𝑛)|

𝑘

𝑝
+ (1 − 𝛾)𝑝|𝜂𝑛𝛼

1/𝑝(𝑛)|
𝑘

𝑝
) 
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for all 𝑛 = ℕ ∪ {0}. Hence we write 

∑

∞

𝑛=0

|𝛾𝜁𝑛 + (1 − 𝛾)𝜂𝑛|𝑘
𝑝𝛼(𝑛)

≾ 2𝑝 (𝛾𝑝∑

∞

𝑛=0

|𝜁𝑛𝛼
1/𝑝(𝑛)|

𝑘

𝑝

+ (1 − 𝛾)𝑝∑

∞

𝑛=0

|𝜂𝑛𝛼
1/𝑝(𝑛)|

𝑘

𝑝
) 

                                          

= 2𝑝 (𝛾𝑝∑

∞

𝑛=0

|𝜁𝑛|𝑘
𝑝𝛼(𝑛)

+ (1 − 𝛾)𝑝∑

∞

𝑛=0

|𝜂𝑛|𝑘
𝑝𝛼(𝑛)) 

Therefore, based on the comparison test, it can be concluded that the 

series  

∑

∞

𝑛=0

|𝛾𝜁𝑛 + (1 − 𝛾)𝜂𝑛|𝑘
𝑝
𝛼(𝑛) 

is convergent. Thus, 𝛾𝜁 + (1 − 𝛾)𝜂 ∈ 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  is achieved as 

intended. Hence, it can be concluded that 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) is 𝔹ℂ-convex. 

Now, let us demonstrate the 𝔹ℂ-convexity of 𝑙∞,𝛼
𝑘 (𝔹ℂ). Let 

𝜁 = (𝜁𝑛), 𝜂 = (𝜂𝑛) ∈ 𝑙∞,𝛼
𝑘 (𝔹ℂ)  and 𝛾 ∈ 𝔻+  where 0 ≾ 𝛾 ≾ 1 . 

Then  

sup
𝔻
{|𝜁𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ} 

and  

sup
𝔻
{|𝜂𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ} 
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are finite. Therefore, we obtain 

sup
𝔻
{|𝛾𝜁𝑛 + (1 − 𝛾)𝜂𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ}

≾ sup
𝔻
{𝛾|𝜁𝑛|𝑘𝛼(𝑛) + (1 − 𝛾)|𝜂𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ} 

                                                                
= 𝛾sup

𝔻
{|𝜁𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ}

+ (1 − 𝛾)sup
𝔻
{|𝜂𝑛|𝑘𝛼(𝑛): 𝑛 ∈ ℕ}. 

Consequently, 𝛾𝜁 + (1 − 𝛾)𝜂 ∈ 𝑙∞,𝛼
𝑘 (𝔹ℂ) is established. Hence, it 

can be concluded that 𝑙∞,𝛼
𝑘 (𝔹ℂ) is 𝔹ℂ-convex.  

 

Theorem 2.2. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. Then lp,α
k (𝔹ℂ) is 𝔹ℂ-strictly convex for 1 < p < ∞.  

 

Proof. Let 𝜁, 𝜂 ∈ 𝑙𝑝,𝛼
𝑘 (𝔹ℂ)  with 𝜁 ≠ 𝜂 , ‖𝜁‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) =

‖𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) = 1 and 𝛾 ∈ 𝔻+ with 0 ≾ 𝛾 ≾ 1. By Remark 1.11, we 

get 𝜁𝛼
1

𝑝 ∈ 𝑙𝑝
𝑘(𝔹ℂ) and 𝜂𝛼

1

𝑝 ∈ 𝑙𝑝
𝑘(𝔹ℂ). Then we have  

‖𝜁𝛼
1
𝑝‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

= 1 and ‖𝜂𝛼
1
𝑝‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

= 1. 

As stated by Theorem 1.7, it has been established that 𝑙𝑝
𝑘(𝔹ℂ) has 

𝔹ℂ-strictly convexity for 1 < 𝑝 < ∞. Therefore, we obtain  

‖𝛾𝜁 + (1 − 𝛾)𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) = ‖(𝛾𝜁 + (1 − 𝛾)𝜂)𝛼
1
𝑝‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

 

                                                           = ‖𝛾𝜁𝛼
1
𝑝 + (1 − 𝛾)𝜂𝛼

1
𝑝‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

≺ 1 
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for 1 < 𝑝 < ∞. Consequently, the property of 𝔹ℂ-strictly convexity 

is assured in 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) for 1 < 𝑝 < ∞.  

Theorem 2.3. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. Then lp,α
k (𝔹ℂ) is 𝔹ℂ-uniformly convex for 2 ≤ p < ∞.  

 

Proof. Let 2 ≤ 𝑝 < ∞ . Let us take 𝜁 = (𝜁𝑛), 𝜂 = (𝜂𝑛) ∈
𝑙𝑝,𝛼
𝑘 (𝔹ℂ) , 𝜖 ∈ 𝔻+  with 0 ≺ 𝜖 ≾ 2 , ‖𝜁‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≾ 1 , 

‖𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≾ 1, ‖𝜁 − 𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≿ 𝜖. Thus, we can write  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝

= ∑

∞

𝑛=0

|𝜁𝑛 + 𝜂𝑛|𝑘
𝑝𝛼(𝑛) +∑

∞

𝑛=0

|𝜁𝑛 − 𝜂𝑛|𝑘
𝑝𝛼(𝑛) 

                                                               

= ∑

∞

𝑛=0

(|𝜁𝑛 + 𝜂𝑛|𝑘
𝑝𝛼(𝑛) + |𝜁𝑛 − 𝜂𝑛|𝑘

𝑝𝛼(𝑛)) 

                                                                           

= ∑

∞

𝑛=0

(|(𝜁𝑛 + 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

+ |(𝜁𝑛 − 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

). 

By applying the inequality stated in Lemma 1.2, we have 

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝

≾ ∑

∞

𝑛=0

2𝑝−1 |𝜁𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

+ |𝜂𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

 

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝

≾ 2𝑝−1(∑

∞

𝑛=0

|𝜁𝑛|𝑘
𝑝𝛼(𝑛) +∑

∞

𝑛=0

|𝜂𝑛|𝑘
𝑝𝛼(𝑛)) 
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= 2𝑝−1 (‖𝜁‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) + ‖𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ)) 

                    ≾ 2𝑝−1. 2 = 2𝑝. 

Therefore, we get  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 ≾ 2𝑝 − ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 ≾ 2𝑝 − 𝜖𝑝, 

it follows that  

‖
𝜁 + 𝜂

2
‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)
= (

1

2𝑝
‖𝜁 + 𝜂‖

𝔻,𝑙𝑝,𝛼
𝑘 (𝔹ℂ)

𝑝 )

1
𝑝
≾ (1 − (

𝜖

2
)
𝑝

)

1
𝑝
. 

If an assumption is made that 𝛿(𝜖) = 1 − (1 − (
𝜖

2
)
𝑝

)
1/𝑝

, then it is 

possible to conclude that 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) is 𝔹ℂ-uniformly convex for 2 ≤

𝑝 < ∞.  

Lemma 2.4. (𝔻-Holder's inequality for 𝒑 ∈ (𝟎, 𝟏)) Let p and 

q be real numbers with 0 < p < 1 and −∞ < p < 0 such that 
1

p
+

1

q
= 1. Assume that ζm, ηm ∈ 𝔹ℂ for m ∈ {1,2,… , n}. Then we have  

∑

𝑛

𝑚=1

|𝜁𝑚𝜂𝑚|𝑘 ≿ (∑

𝑛

𝑚=1

|𝜁𝑚|𝑘
𝑝)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚|𝑘
𝑞)

1
𝑞

. 

 

Proof. Suppose that the conditions of the lemma hold. Let 𝜁𝑚 =
𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2  and 𝜂𝑚 = 𝜂𝑚1𝑒1 + 𝜂𝑚2𝑒2  for 𝑚 ∈ {1,2, … , 𝑛} . By 

using the properties of |. |𝑘, we can write  

∑

𝑛

𝑚=1

|𝜁𝑚𝜂𝑚|𝑘 = ∑

𝑛

𝑚=1

|𝜁𝑚|𝑘|𝜂𝑚|𝑘 
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= ∑

𝑛

𝑚=1

|𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2|𝑘|𝜂𝑚1𝑒1 + 𝜂𝑚2𝑒2|𝑘 

                                                                                

= ∑

𝑛

𝑚=1

(|𝜁𝑚1|𝑒1 + |𝜁𝑚2|𝑒2)(|𝜂𝑚1|𝑒1 + |𝜂𝑚2|𝑒2) 

                                                                

= ∑

𝑛

𝑚=1

(|𝜁𝑚1||𝜂𝑚1|𝑒1 + |𝜁𝑚2||𝜂𝑚2|𝑒2) 

                                                                                

= (∑

𝑛

𝑚=1

|𝜁𝑚1||𝜂𝑚1|) 𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2||𝜂𝑚2|) 𝑒2. 

By applying the usual Hölder’s inequality for 𝑝 ∈ (0,1) in Section 

2.8 of (Hardy & et al., 1952), we get  

∑

𝑛

𝑚=1

|𝜁𝑚𝜂𝑚|𝑘 ≿ ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑞)

1
𝑞

)𝑒1 

                            +((∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑞)

1
𝑞

)𝑒2 

                                   = ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)

1
𝑝

𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)

1
𝑝

𝑒2) 
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                                     × ((∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑞)

1
𝑞

𝑒1 + (∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑞)

1
𝑞

𝑒2). 

By considering the property stated in Definition 1.1, we obtain 

∑

𝑛

𝑚=1

|𝜁𝑚𝜂𝑚|𝑘 ≿ ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)𝑒2)

1
𝑝

 

                          × ((∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑞) 𝑒1 + (∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑞)𝑒2)

1
𝑞

 

                                                         

= (∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝𝑒1 + |𝜁𝑚2|

𝑝𝑒2)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑞𝑒1

+ |𝜂𝑚2|
𝑞𝑒2)

1
𝑞

 

                                                          

= (∑

𝑛

𝑚=1

(|𝜁𝑚1|𝑒1 + |𝜁𝑚2|𝑒2)
𝑝)

1
𝑝

(∑

𝑛

𝑚=1

(|𝜂𝑚1|𝑒1

+ |𝜂𝑚2|𝑒2)
𝑞)

1
𝑞
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= (∑

𝑛

𝑚=1

|𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2|𝑘
𝑝
)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚1𝑒1

+ 𝜂𝑚2𝑒2|𝑘
𝑞)

1
𝑞

 

  = (∑

𝑛

𝑚=1

|𝜁𝑚|𝑘
𝑝)

1
𝑝

(∑

𝑛

𝑚=1

|𝜂𝑚|𝑘
𝑞)

1
𝑞

. 

Lemma 2.5. (𝔻-Minkowski inequality for 𝒑 ∈ (𝟎, 𝟏)) Let p 

be a real number with 0 < p < 1 . Assume that ζm, ηm ∈ 𝔹ℂ  for 

m ∈ {1,2,… , n}. Then we have  

(∑

𝑛

𝑚=1

|𝜁𝑚 + 𝜂𝑚|𝑘
𝑝)

1
𝑝

≿ (∑

𝑛

𝑚=1

|𝜁𝑚|𝑘
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚|𝑘
𝑝)

1
𝑝

. 

  

Proof. Suppose that the conditions of the lemma hold. Let 𝜁𝑚 =
𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2  and 𝜂𝑚 = 𝜂𝑚1𝑒1 + 𝜂𝑚2𝑒2  for 𝑚 ∈ {1,2, … , 𝑛} . By 

using the properties of |. |𝑘 and the property stated in Definition 1.1, 

we can write 

(∑

𝑛

𝑚=1

|𝜁𝑚 + 𝜂𝑚|𝑘
𝑝)

1
𝑝

= (∑

𝑛

𝑚=1

|(𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2) + (𝜂𝑚1𝑒1 + 𝜂𝑚2𝑒2)|𝑘
𝑝)

1
𝑝

 

                             = (∑

𝑛

𝑚=1

|(𝜁𝑚1 + 𝜂𝑚1)𝑒1 + (𝜁𝑚2 + 𝜂𝑚2)𝑒2|𝑘
𝑝
)

1
𝑝
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= (∑

𝑛

𝑚=1

|𝜁𝑚1 + 𝜂𝑚1|
𝑝𝑒1 + |𝜁𝑚2 + 𝜂𝑚2|

𝑝𝑒2)

1
𝑝

 

= ((∑

𝑛

𝑚=1

|𝜁𝑚1 + 𝜂𝑚1|
𝑝)𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2 + 𝜂𝑚2|
𝑝) 𝑒2)

1
𝑝

 

= (∑

𝑛

𝑚=1

|𝜁𝑚1 + 𝜂𝑚1|
𝑝)

1
𝑝

𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2 + 𝜂𝑚2|
𝑝)

1
𝑝

𝑒2. 

By applying the usual Minkowski inequality for 𝑝 ∈ (0,1)  in 

Section 2.11 of (Hardy & et al., 1952), we get 

(∑

𝑛

𝑚=1

|𝜁𝑚 + 𝜂𝑚|𝑘
𝑝)

1
𝑝

≿ ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑝)

1
𝑝

)𝑒1 

                                    +((∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑝)

1
𝑝

)𝑒2 

                                       = ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)

1
𝑝

𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)

1
𝑝

𝑒2) 

                                        +((∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑝)

1
𝑝

𝑒1

+ (∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑝)

1
𝑝

𝑒2) 
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                               = ((∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝)𝑒1 + (∑

𝑛

𝑚=1

|𝜁𝑚2|
𝑝)𝑒2)

1
𝑝

 

                                +((∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑝)𝑒1 + (∑

𝑛

𝑚=1

|𝜂𝑚2|
𝑝) 𝑒2)

1
𝑝

 

(∑

𝑛

𝑚=1

|𝜁𝑚 + 𝜂𝑚|𝑘
𝑝
)

1
𝑝

 

≿ (∑

𝑛

𝑚=1

|𝜁𝑚1|
𝑝𝑒1 + |𝜁𝑚2|

𝑝𝑒2)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚1|
𝑝𝑒1 + |𝜂𝑚2|

𝑝𝑒2)

1
𝑝

 

                                             

= (∑

𝑛

𝑚=1

(|𝜁𝑚1|𝑒1 + |𝜁𝑚2|𝑒2)
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

(|𝜂𝑚1|𝑒1 + |𝜂𝑚2|𝑒2)
𝑝)

1
𝑝

 

                               

= (∑

𝑛

𝑚=1

|𝜁𝑚1𝑒1 + 𝜁𝑚2𝑒2|𝑘
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚1𝑒1 + 𝜂𝑚2𝑒2|𝑘
𝑝)

1
𝑝
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= (∑

𝑛

𝑚=1

|𝜁𝑚|𝑘
𝑝)

1
𝑝

+ (∑

𝑛

𝑚=1

|𝜂𝑚|𝑘
𝑝)

1
𝑝

. 

  

Proposition 2.6. Let p and q be real numbers with 1 < p < 2 

and q =
p

p−1
. Assume that ζ = (ζn), η = (ηn) ∈ lp

k(𝔹ℂ). Then we 

have  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞

≾ 2(‖𝜁‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 )
𝑞−1

. 

 

Proof. Suppose that the conditions of the theorem hold. Firstly, 

we can write  

‖𝜁‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞 = (∑

∞

𝑛=1

|𝜁𝑛|𝑘
𝑝)

𝑞
𝑝

= (∑

∞

𝑛=1

|𝜁𝑛|𝑘
𝑞(𝑝−1))

1
𝑝−1

= ‖|𝜁|𝑘
𝑞‖

𝔻,𝑙𝑝−1,𝛼
𝑘 (𝔹ℂ)

. 

(4) 

By applying the equality (4) to ‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞
 and ‖𝜁 − 𝜂‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

𝑞
, 

respectively, and using 𝔻-Minkowski inequality for 𝑝 − 1 ∈ (0,1), 
we get 

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞

= ‖|𝜁 + 𝜂|𝑘
𝑞‖

𝔻,𝑙𝑝−1
𝑘 (𝔹ℂ)

+ ‖|𝜁 − 𝜂|𝑘
𝑞‖

𝔻,𝑙𝑝−1
𝑘 (𝔹ℂ)

 

                                          ≾ ‖|𝜁 + 𝜂|𝑘
𝑞 + |𝜁 − 𝜂|𝑘

𝑞‖
𝔻,𝑙𝑝−1

𝑘 (𝔹ℂ)
. 

By utilizing the expression provided in Lemma 1.6, we obtain  
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‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞

≾ 2‖(|𝜁|𝑘
𝑝 + |𝜂|𝑘

𝑝)
𝑞−1

‖
𝔻,𝑙𝑝−1

𝑘 (𝔹ℂ)
 

                                                                         

= 2(∑

∞

𝑛=1

(|𝜁𝑛|𝑘
𝑝 + |𝜂𝑛|𝑘

𝑝)
(𝑞−1)(𝑝−1)

)

1
𝑝−1

 

                                                       = 2(∑

∞

𝑛=1

(|𝜁𝑛|𝑘
𝑝
+ |𝜂𝑛|𝑘

𝑝))

1
𝑝−1

 

                                                                

= 2 (‖𝜁‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 )
𝑞−1

. 

Theorem 2.7. Let 1 < p < 2. Then lp
k(𝔹ℂ) is 𝔹ℂ-uniformly 

convex.  

 

Proof. Let 1 < 𝑝 < 2 . Let us take 𝜁 = (𝜁𝑛), 𝜂 = (𝜂𝑛) ∈
𝑙𝑝
𝑘(𝔹ℂ), 𝜖 ∈ 𝔻+ with 0 ≺ 𝜖 ≾ 2, ‖𝜁‖𝔻,𝑙𝑝𝑘(𝔹ℂ) ≾ 1, ‖𝜂‖𝔻,𝑙𝑝𝑘(𝔹ℂ) ≾ 1, 

‖𝜁 − 𝜂‖𝔻,𝑙𝑝𝑘(𝔹ℂ) ≿ 𝜖. By Proposition 2.6, we can write  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞

≾ 2 (‖𝜁‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 )
𝑞−1

− ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑞
 

≾ 2𝑞 − 𝜖𝑞 = 2𝑞 (1 − (
𝜖

2
)
𝑞

). 

Then, we have 
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‖𝜁 + 𝜂‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)

𝑝 ≾ 2𝑝 (1 − (
𝜖

2
)
𝑞

)

𝑝
𝑞
 

Hence, it follows that  

‖
𝜁 + 𝜂

2
‖
𝔻,𝑙𝑝

𝑘(𝔹ℂ)
= (

1

2𝑝
‖𝜁 + 𝜂‖

𝔻,𝑙𝑝
𝑘(𝔹ℂ)

𝑝 )

1
𝑝
≾ (1 − (

𝜖

2
)
𝑞

)

1
𝑞
. 

If an assumption is made that 𝛿(𝜖) = 1 − (1 − (
𝜖

2
)
𝑞

)
1/𝑞

, then it is 

possible to conclude that 𝑙𝑝
𝑘(𝔹ℂ) is 𝔹ℂ-uniformly convex for 1 <

𝑝 < 2.  

 

Proposition 2.8. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. Let p and q be real numbers with 1 < p ≤ 2 and q =
p

p−1
. 

Assume that ζ = (ζn), η = (ηn) ∈ lp,α
k (𝔹ℂ). Then we have  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞

≾ 2(‖𝜁‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 )
𝑞−1

. 

  

Proof. Let 𝑣 = (𝑣𝑛), 𝑠 = (𝑠𝑛) ∈ 𝑙𝑝
𝑘(𝔹ℂ) . By 𝔻 -Minkowski 

inequality for 𝑟 ∈ (0,1), we can write 

(∑

∞

𝑛=0

|𝑣𝑛|𝑘
𝑟)

1
𝑟

+ (∑

∞

𝑛=0

|𝑠𝑛|𝑘
𝑟)

1
𝑟

≾ (∑

∞

𝑛=0

|𝑣𝑛 + 𝑠𝑛|𝑘
𝑟)

1
𝑟

. 

(5) 

Let {𝛼(𝑛)}𝑛=0
∞  be a bicomplex weighted sequence. Let 𝑝 and 𝑞 be 

real numbers with 1 < 𝑝 ≤ 2  and 𝑞 =
𝑝

𝑝−1
. Assume that 𝜁 =

(𝜁𝑛), 𝜂 = (𝜂𝑛) ∈ 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) . Thus 𝜁𝛼

1

𝑝, 𝜂𝛼
1

𝑝 ∈ 𝑙𝑝
𝑘(𝔹ℂ)  by Remark 

1.11. Let us replace 𝑟 by 
𝑝

𝑞
 and in (5) for  



 

--100-- 

 

𝑣𝑛 = |(𝜁𝑛 + 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑞

 

and  

𝑠𝑛 = |(𝜁𝑛 − 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑞

. 

Then we write 

(∑

∞

𝑛=0

|(𝜁𝑛 + 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

)

𝑞
𝑝

+ (∑

∞

𝑛=0

|(𝜁𝑛 − 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

)

𝑞
𝑝

 

≾ (∑

∞

𝑛=0

(|(𝜁𝑛 + 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑞

+ |(𝜁𝑛 − 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑞

)

𝑝
𝑞

)

𝑞
𝑝

 

                             

= (∑

∞

𝑛=0

(|(𝜁𝑛𝛼
1
𝑝(𝑛) + 𝜂𝑛𝛼

1
𝑝(𝑛))|

𝑘

𝑞

+ |(𝜁𝑛𝛼
1
𝑝(𝑛) − 𝜂𝑛𝛼

1
𝑝(𝑛))|

𝑘

𝑞

)

𝑝
𝑞

)

𝑞
𝑝

. 

By using Lemma 1.6, we get 

(∑

∞

𝑛=0

|(𝜁𝑛 + 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

)

𝑞
𝑝

+ (∑

∞

𝑛=0

|(𝜁𝑛 − 𝜂𝑛)𝛼
1
𝑝(𝑛)|

𝑘

𝑝

)

𝑞
𝑝

 

≾ (∑

∞

𝑛=0

(2(|𝜁𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

+ |𝜂𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

)

𝑞−1

)

𝑝
𝑞

)

𝑞
𝑝
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= 2(∑

∞

𝑛=0

(|𝜁𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

+ |𝜂𝑛𝛼
1
𝑝(𝑛)|

𝑘

𝑝

))

𝑞
𝑝

 

                              = 2(∑

∞

𝑛=0

|𝜁𝑛|𝑘
𝑝𝛼(𝑛) +∑

∞

𝑛=0

|𝜂𝑛|𝑘
𝑝𝛼(𝑛))

𝑞
𝑝

= 2(‖𝜁‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 )
𝑞−1

 

where 𝑞 − 1 =
𝑝

𝑞
. Therefore, we obtain 

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞 + ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞

≾ 2(‖𝜁‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 )
𝑞−1

. 

  

Theorem 2.9. Let {α(n)}n=0
∞  be a bicomplex weighted 

sequence. Then lp,α
k (𝔹ℂ) is 𝔹ℂ-uniformly convex for 1 < p < 2.  

 

Proof. Let 1 < 𝑝 < 2 . Let us take 𝜁 = (𝜁𝑛), 𝜂 = (𝜂𝑛) ∈
𝑙𝑝,𝛼
𝑘 (𝔹ℂ) , 𝜖 ∈ 𝔻+  with 0 ≺ 𝜖 ≾ 2 , ‖𝜁‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≾ 1 , 

‖𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≾ 1, ‖𝜁 − 𝜂‖𝔻,𝑙𝑝,𝛼𝑘 (𝔹ℂ) ≿ 𝜖. By Proposition 2.8, we can 

write  

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞

≾ 2 (‖𝜁‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 + ‖𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 )
𝑞−1

− ‖𝜁 − 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑞
 

≾ 2𝑞 − 𝜖𝑞 = 2𝑞 (1 − (
𝜖

2
)
𝑞

). 
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Then, we have 

‖𝜁 + 𝜂‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)

𝑝 ≾ 2𝑝 (1 − (
𝜖

2
)
𝑞

)

𝑝
𝑞

 

Hence, it follows that  

‖
𝜁 + 𝜂

2
‖
𝔻,𝑙𝑝,𝛼

𝑘 (𝔹ℂ)
= (

1

2𝑝
‖𝜁 + 𝜂‖

𝔻,𝑙𝑝,𝛼
𝑘 (𝔹ℂ)

𝑝 )

1
𝑝
≾ (1 − (

𝜖

2
)
𝑞

)

1
𝑞
. 

If an assumption is made that 𝛿(𝜖) = 1 − (1 − (
𝜖

2
)
𝑞

)
1/𝑞

, then it is 

possible to conclude that 𝑙𝑝,𝛼
𝑘 (𝔹ℂ) is 𝔹ℂ-uniformly convex for 1 <

𝑝 < 2.  
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Introduction 

Nowadays, computer-aided design for productions in every 

field is a trend investigation area. Owing to this, it is possible to 

avoid from losts such as time and budget, arising from long and 

costly experimental processes. Using graph theory applications is 

one of the methods contributing to this aim. 

Graph theory is related to the modeling of objects and relations 

of each object with each other by representing each object as a vertex 

and each relation of objects as an edge. The concept of topological 

index, which takes place in chemical graph theory, succeeds to 
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obtain numeric values from molecular graphs of compounds, and 

these numerical datas have a big importance for the creation and 

efficiency of existing and also new designs. Every time it is not 

impossible to do computing stages manually via formulas. There are 

hundreds of topological indices and also various of them have 

complex formulas. To avoid from difficulties of calculations, there 

exist some methods applied via algebraic polynomials such as "𝑀-

polynomial", "𝐶𝑜𝑀 -polynomial" etc... (See from [1-3]) Each of 

them is a degree-based polynomial derivated by the edge and vertex 

partition technique from the graph and complement graph of a 

compound. 

In [17] authors handled the optical transpose interconnection 

system swapped network via topological indices. In [18], 

polynomials of degree-based topological indices for the OTIS and 

swapped networks have been studied. 

Dendrimers are multibranched composite structures that have 

been studied extensively [4-9] and are of many applications in drug 

delivery [10, 11], catalysis [12], and light harvesting [13]. Nanostar 

dendrimer is a part of the new group of macro-particles that appear 

to be photon funnels just like artificial antennas and are used in the 

formation of nanotubes, micro and macro-capsules, chemical 

sensors, colored glasses, and modified electrodes [14-16]. 
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Figure 1. Bibliometric analysis of the keywords of dendrimers and 

applications in physics 

The Bibliometric analysis of the keywords in publications of 

dendrimers in physics using the WOS data base 

(https://www.webofscience.com/wos/woscc/basic-search) is 

presented on in Figure 1. 

 

Figure 2. Bibliometric analysis of the keywords of topological 

indices and dendrimers 
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The Bibliometric analysis of the keywords in publications of 

dendrimers in different fields using the WOS data base 

(https://www.webofscience.com/wos/woscc/basic-search) is 

presented on in Figure 2. 

Following the invention of dendrimers the possibility was 

recognized of using them for improving optical sensor performance 

[19]. Dendritic macromolecules are a new category of hyper-

structured material and have recently been introduced into optical 

and optoelectronic applications. Here, functional chromophores can 

be replaced at branches, cores, and the end of the dendrimers to 

control their optical properties [20]. 

In this study, we calculate various Banhatti topological 

(co)indices, which are defined in the near past [21-24], for two 

dendrimers: Tetrathiafulvalene and Organosilicon dendrimers via 

two algebraic polynomials mentioned above. We give numerical and 

graphical comparisons to indicate the performance of indices and 

coindices. We hope these representations and numeric data may be 

helpful for testing the efficiency of optical applications of 

dendrimers in the future. 

Preliminaries 

The complement of a graph 𝐺, signed by �̅�, is a simple graph 

with the same vertex set 𝑉(𝐺) provided that any two vertices 𝑣1𝑣2 ∈
𝐸(�̅�) if and only if  𝑣1𝑣2 ∉ 𝐸(𝐺) [25]. Over time, researchers have 

begun to incorporate the nonadjacent pairing of vertices into 

consideration while calculating some topological indices of 

molecular graphs, resulting in degree-based topological indices 

known as coindices. In [3] Kirmani constructed 𝐶𝑜𝑀-polynomials 

as an alternative to 𝑀-polynomials using Berhe’s Lemma [26] as 

follows: 
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Lemma 1. The following statement holds for a connected graph 𝐺 

of order 𝑛. 

�̅�𝑖𝑗 = |�̅�𝑖𝑗| = {

𝑛𝑖(𝑛𝑖 − 1)

2
−𝑚𝑖𝑖    , 𝑖 = 𝑗

𝑛𝑖𝑛𝑗 −𝑚𝑖𝑗     , 𝑖 < 𝑗
 

The following representations will be followed in the rest of the 

study for a graph 𝐺. 

𝑛𝑖 = |𝑉𝑖| for 𝑉𝑖 = {𝑣 ∈ 𝑉(𝐺), 𝑑(𝑣) = 𝑖} 

𝑚𝑖𝑗 = |𝐸𝑖𝑗| for 𝐸𝑖𝑗 = {𝑢𝑣 ∈ 𝐸(𝐺), 𝑑(𝑢) = 𝑖 and 𝑑(𝑣) = 𝑗} 

�̅�𝑖𝑗 = |�̅�𝑖𝑗| for �̅�𝑖𝑗 = {𝑢𝑣 ∈ 𝐸(�̅�), 𝑑(𝑢) = 𝑖 and 𝑛(𝑣) = 𝑗} 

where 𝑑(𝑢), 𝑑(𝑣) indicate the degrees of vertices that are adjacent 

to 𝑢 and 𝑣, respectively.  

Definition 1. For a simple connected graph 𝐺, 𝑀 and 𝐶𝑜𝑀-

polynomials are defined as, 

𝑀(𝐺; 𝑥, 𝑦) =∑𝑚𝑖𝑗𝑥
𝑖𝑦𝑗

𝑖≤𝑗

 

𝐶𝑜𝑀(𝐺; 𝑥, 𝑦) =∑�̅�𝑖𝑗𝑥
𝑖𝑦𝑗

𝑖≤𝑗

 

where �̅�𝑖𝑗 represents the number of edges 𝑢𝑣 ∉ 𝐸(𝐺) such that 

{(𝑑(𝑢), 𝑑(𝑣)) = {𝑖, 𝑗}}. 

Models and Methods 

In this part of the study we will present some tables (Table 1 

and Table 2) to construct our 𝑀-polynomials and 𝐶𝑜𝑀-polynomials 
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by edge and vertex partition technique for our dendrimer molecules 

given in Figure 3. 

a. 

 
Figure 3. a. 

Tetrathiafulvalene 

dendrimer of generations 

𝐺𝑛 has grown 2 stages 

b. 

 
b. The second member of the 

Organosilicon dendrimer 

structure 

Tetrathiafulvalene Dendrimer 

It has three type of vertices with the degrees 1, 2 and 3. Hence the 

vertex partition of the structure such that n1 = 6. 2n + 4, n2 =

8. 2n + 8, n3 = 30. 2n + 8. Using these, we obtain the following 

edge partition table (Table 1) by Lemma 1. 

Table 1. Edge partition for Tetrathiafulvalene dendrimer 

(𝒅(𝒖),𝒅(𝒗));  𝒖𝒗
∈ 𝑬(𝑮) 

(1,3) (2,1) (2,2) (2,3) (3,3) 

|𝑬𝒊𝒋| = 𝒎𝒊𝒋 4. 2𝑛 − 4 8. 2𝑛

− 4 

28. 2𝑛

− 16 

92. 2𝑛

− 56 

12. 2𝑛

− 9 

|�̅�𝒊𝒋| = �̅�𝒊𝒋 180. 22𝑛

+ 164. 2𝑛

+ 36 

48. 22𝑛

+ 72. 2𝑛

+ 36 

32. 22𝑛

+ 32. 2𝑛

+ 44 

240. 22𝑛

+ 212. 2𝑛

+ 120 

450. 22𝑛

+ 213. 2𝑛

+ 37 

Hence related polynomials for Tetrathiafulvalene dendrimer 

obtained as 
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𝑀(𝑥, 𝑦) = (4. 2𝑛 − 4)𝑥𝑦3 + (8. 2𝑛 − 4)𝑥2𝑦 + (28. 2𝑛 − 16)𝑥2𝑦2

+ (92. 2𝑛 − 56)𝑥2𝑦3 + (12. 2𝑛 − 9)𝑥3𝑦3 

𝐶𝑜𝑀(𝑥, 𝑦) = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦

+ (32. 22𝑛 + 32. 2𝑛 + 44)𝑥2𝑦2

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥2𝑦3

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥3𝑦3 

Organosilicon Dendrimer 

It has three type of vertices with the degrees 2, 3 and 4. Hence the 

vertex partition of the structure such that n2 = 2. 3
n − 5, n3 =

10

3
. 3n − 2, n4 =

16

3
. 3n − 4. Using these, we obtain the following 

edge partition table (Table 2) by Lemma 1. 

Table 2. Edge partition for Organosilicon Dendrimer 

(𝒅(𝒖), 𝒅(𝒗));  𝒖𝒗
∈ 𝑬(𝑮) 

(𝟐, 𝟐) (𝟐, 𝟑) (𝟑, 𝟒) 

|𝑬𝒊𝒋| = 𝒎𝒊𝒋 𝟔. 𝟑𝒏 − 𝟔 𝟒. 𝟑𝒏 − 𝟒 𝟖

𝟑
. 𝟑𝒏 − 𝟒 

|𝑬𝒊𝒋| = 𝒎𝒊𝒋 2.𝟑𝟐𝒏 −
𝟏𝟕. 𝟑𝒏 + 𝟐𝟏 

𝟐𝟎

𝟑
.𝟑𝟐𝒏 −

𝟕𝟒

𝟑
. 𝟑𝒏 + 𝟏𝟒 

𝟏𝟔𝟎

𝟗
.𝟑𝟐𝒏 −

𝟖𝟎

𝟑
. 𝟑𝒏 + 𝟏𝟐 

Hence related polynomials for Tetrathiafulvalene dendrimer 

obtained as 

𝑀(𝑥, 𝑦) = (6. 3𝑛 − 6)𝑥2𝑦2 + (4. 3𝑛 − 4)𝑥2𝑦3

+ (
8

3
. 3𝑛 − 4) 𝑥3𝑦4 

𝐶𝑜𝑀(𝑥, 𝑦) = (2. 32𝑛 − 17. 3𝑛 + 21)𝑥2𝑦2

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥2𝑦3

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥3𝑦4 
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Table 3. Topological indices 

Topological Index Formula Derivation From 

𝑴(𝑮;  𝒙, 𝒚) 
1. First K Banhatti Index 

(𝐵1(𝐺)) 
∑ (𝑑𝑢 + 𝑑𝑢𝑣)

𝑢𝑣∈𝐸(𝐺)

 
[𝐷𝑥 +𝐷𝑦
+ 2𝐷𝑥𝑄−2𝐽](𝑓(𝑥, 𝑦))𝑥=𝑦=1 

2. Second K Banhatti 

Index (𝐵2(𝐺)) 
∑ (𝑑𝑢 . 𝑑𝑢𝑣)

𝑢𝑣∈𝐸(𝐺)

 [𝐷𝑥𝑄−2𝐽(𝐷𝑥
+𝐷𝑦)](𝑓(𝑥, 𝑦))𝑥=1 

3. First K Hyper Banhatti 

Index (𝐻𝐵1(𝐺)) 
∑ (𝑑𝑢

𝑢𝑣∈𝐸(𝐺)

+ 𝑑𝑢𝑣)
2 

[𝐷𝑥
2 + 𝐷𝑦

2 + 2𝐷𝑥
2𝑄−2𝐽

+ 2𝐷𝑥𝑄−2𝐽(𝐷𝑥
+𝐷𝑦)](𝑓(𝑥, 𝑦))𝑥=𝑦=1 

4. Second K Hyper 

Banhatti Index (𝐻𝐵2(𝐺)) 
∑ (𝑑𝑢 . 𝑑𝑢𝑣)

2

𝑢𝑣∈𝐸(𝐺)

 [𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2

+ 𝐷𝑦
2)](𝑓(𝑥, 𝑦))𝑥=1 

5. Modified First K 

Banhatti Index (𝑚𝐵1(𝐺)) 
∑

1

(𝑑𝑢 + 𝑑𝑢𝑣)
𝑢𝑣∈𝐸(𝐺)

 
[𝑆𝑥𝑄−2𝐽(𝐿𝑥
+ 𝐿𝑦)](𝑓(𝑥, 𝑦))𝑥=1 

6. Modified Second K 

Banhatti Index (𝑚𝐵2(𝐺)) 
∑

1

(𝑑𝑢 . 𝑑𝑢𝑣)
𝑢𝑣∈𝐸(𝐺)

 
[𝑆𝑥𝑄−2𝐽(𝑆𝑥
+ 𝑆𝑦)](𝑓(𝑥, 𝑦))𝑥=1 

Here motivated by Banhatti indices given in Table 3 we define 

various Banhatti coindices in Table 4. After this section we will 

calculate the related topological indices and coindices via 

derivations from our constructed 𝑀 and 𝐶𝑜𝑀-polynomials.  

Table 4. Topological Coindices 

Topological Coindex Formula Derivation From 

𝑪𝒐𝑴(𝑮;  𝒙, 𝒚) 
1. First K Banhatti Coindex 

(𝐵1̅̅ ̅(𝐺)) 
∑ (𝑑𝑢 + 𝑑𝑢𝑣)

𝑢𝑣∈𝐸(�̅�)

 [𝐷𝑥 + 𝐷𝑦
+ 2𝐷𝑥𝑄−2𝐽](𝑓(𝑥, 𝑦))𝑥=𝑦=1 

2. Second K Banhatti Coindex 

(𝐵2̅̅ ̅(𝐺)) 
∑ (𝑑𝑢. 𝑑𝑢𝑣)

𝑢𝑣∈𝐸(�̅�)

 [𝐷𝑥𝑄−2𝐽(𝐷𝑥
+ 𝐷𝑦)](𝑓(𝑥, 𝑦))𝑥=1 

3. First K Hyper Banhatti 

Coindex (𝐻𝐵1̅̅ ̅̅ ̅̅ (𝐺)) 
∑ (𝑑𝑢

𝑢𝑣∈𝐸(�̅�)

+ 𝑑𝑢𝑣)
2 

[𝐷𝑥
2 + 𝐷𝑦

2 + 2𝐷𝑥
2𝑄−2𝐽

+ 2𝐷𝑥𝑄−2𝐽(𝐷𝑥
+ 𝐷𝑦)](𝑓(𝑥, 𝑦))𝑥=𝑦=1 

4. Second K Hyper Banhatti 

Coindex (𝐻𝐵2̅̅ ̅̅ ̅̅ (𝐺)) 
∑ (𝑑𝑢. 𝑑𝑢𝑣)

2

𝑢𝑣∈𝐸(�̅�)

 [𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2

+𝐷𝑦
2)](𝑓(𝑥, 𝑦))𝑥=1 

5. Modified First K Banhatti 

Coindex (𝑚𝐵1̅̅ ̅̅ ̅̅ (𝐺)) 
∑

1

(𝑑𝑢 + 𝑑𝑢𝑣)
𝑢𝑣∈𝐸(�̅�)

 
[𝑆𝑥𝑄−2𝐽(𝐿𝑥
+ 𝐿𝑦)](𝑓(𝑥, 𝑦))𝑥=1 
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6. Modified Second K Banhatti 

Coindex (𝑚𝐵2̅̅ ̅̅ ̅̅ (𝐺)) 
∑

1

(𝑑𝑢. 𝑑𝑢𝑣)
𝑢𝑣∈𝐸(�̅�)

 
[𝑆𝑥𝑄−2𝐽(𝑆𝑥
+ 𝑆𝑦)](𝑓(𝑥, 𝑦))𝑥=1 

 

𝐷𝑥𝑓(𝑥, 𝑦) = 𝑥
𝜕(𝑓(𝑥, 𝑦))

𝜕𝑥
𝐷𝑦𝑓(𝑥, 𝑦) = 𝑦

𝜕(𝑓(𝑥, 𝑦))

𝜕𝑦

𝐿𝑥(𝑓(𝑥, 𝑦)) = 𝑓(𝑥
2, 𝑦) 𝐿𝑦(𝑓(𝑥, 𝑦)) = 𝑓(𝑥, 𝑦

2)

𝑆𝑥𝑓(𝑥, 𝑦) = ∫
𝑓(𝑡, 𝑦)

𝑡

𝑥

0

𝑑𝑡 𝑆𝑦𝑓(𝑥, 𝑦) = ∫
𝑓(𝑥, 𝑡)

𝑡

𝑦

0

𝑑𝑡

𝐽𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑥) 𝑄𝛼𝑓(𝑥, 𝑦) = 𝑥𝛼𝑓(𝑥, 𝑦)

 

Computation Results 

Computation of Topological Indices with the help of 𝑴-

polynomials on Tetrathiafulvalene and Organosilicon 

Dendrimers 

Theorem 1. The topological indices for Tetrathiafulvalene are 

given by,  

𝐵1(𝐺) = 1476. 2
𝑛 − 922, 𝐵2(𝐺) = 1948. 2𝑛 − 1236

𝐻𝐵1(𝐺) = 7900. 2
𝑛 − 4990, 𝐻𝐵2(𝐺) = 15220. 2

𝑛 − 9740

𝑚𝐵1(𝐺) =
12592

210
. 2𝑛 −

1536

42
, 𝑚𝐵2(𝐺) =

1012

18
. 2𝑛 −

855

18
 .

 

Proof.  

The 𝑀- polynomial of Tetrathiafulvalene is of the form 

 

𝑀(𝐺; 𝑥, 𝑦) = (4. 2𝑛 − 4)𝑥𝑦3 + (8. 2𝑛 − 4)𝑥2𝑦

+ (28. 2𝑛 − 16)𝑥2𝑦2 + (92. 2𝑛 − 56)𝑥2𝑦3

+ (12. 2𝑛 − 9)𝑥3𝑦3. 

Then, 
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𝐷𝑥 = (4. 2𝑛 − 4)𝑥𝑦3 + (16. 2𝑛 − 8)𝑥2𝑦 + (56. 2𝑛 − 32)𝑥2𝑦2

+ (184. 2𝑛 − 112)𝑥2𝑦3 + (36. 2𝑛 − 27)𝑥3𝑦3 

𝐷𝑦 = (12. 2𝑛 − 12)𝑥𝑦3 + (8. 2𝑛 − 4)𝑥2𝑦 + (56. 2𝑛 − 32)𝑥2𝑦2

+ (276. 2𝑛 − 168)𝑥2𝑦3 + (36. 2𝑛 − 27)𝑥3𝑦3 

𝐷𝑥 + 𝐷𝑦 = (16. 2𝑛 − 16)𝑥𝑦3 + (24. 2𝑛 − 12)𝑥2𝑦

+ (112. 2𝑛 − 64)𝑥2𝑦2 + (460. 2𝑛 − 280)𝑥2𝑦3

+ (72. 2𝑛 − 54)𝑥3𝑦3 

𝐽 = (8. 2𝑛 − 4)𝑥3 + (32. 2𝑛 − 20)𝑥4 + (92. 2𝑛 − 56)𝑥5

+ (12. 2𝑛 − 9)𝑥6 

2𝐷𝑥𝑄−2𝐽 = (16. 2𝑛 − 8)𝑥3 + (128. 2𝑛 − 80)𝑥4

+ (552. 2𝑛 − 336)𝑥5 + (96. 2𝑛 − 72)𝑥6 

𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (24. 2𝑛 − 12)𝑥2 + (256. 2𝑛 − 160)𝑥2

+ (1380. 2𝑛 − 840)𝑥3 + (288. 2𝑛 − 224)𝑥4 

2𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (48. 2𝑛 − 24)𝑥2 + (512. 2𝑛 − 320)𝑥2

+ (2760. 2𝑛 − 1680)𝑥3 + (576. 2𝑛 − 448)𝑥4 

2𝐷𝑥
2𝑄−2𝐽 = (16. 2𝑛 − 8)𝑥2 + (256. 2𝑛 − 160)𝑥2

+ (1656. 2𝑛 − 1008)𝑥3 + (384. 2𝑛 − 288)𝑥4 

𝐷𝑥
2 = (4. 2𝑛 − 4)𝑥𝑦3 + (32. 2𝑛 − 16)𝑥2𝑦 + (112. 2𝑛 − 64)𝑥2𝑦2

+ (368. 2𝑛 − 224)𝑥2𝑦3 + (108. 2𝑛 − 81)𝑥3𝑦3 

𝐷𝑦
2 = (12. 2𝑛 − 12)𝑥𝑦3 + (8. 2𝑛 − 4)𝑥2𝑦 + (112. 2𝑛 − 64)𝑥2𝑦2

+ (828. 2𝑛 − 504)𝑥2𝑦3 + (108. 2𝑛 − 81)𝑥3𝑦3 

𝐷𝑥
2 + 𝐷𝑦

2 = (16. 2𝑛 − 16)𝑥𝑦3 + (40. 2𝑛 − 20)𝑥2𝑦

+ (224. 2𝑛 − 128)𝑥2𝑦2 + (1196. 2𝑛 − 728)𝑥2𝑦3

+ (216. 2𝑛 − 162)𝑥3𝑦3 
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𝑄−2𝐽(𝐷𝑥
2 + 𝐷𝑦

2)

= (40. 2𝑛 − 20)𝑥 + (240. 2𝑛 − 144)𝑥2

+ (1196. 2𝑛 − 728)𝑥3 + (216. 2𝑛 − 162)𝑥4 

𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2 + 𝐷𝑦
2)

= (40. 2𝑛 − 20)𝑥 + (960. 2𝑛 − 576)𝑥2

+ (10764. 2𝑛 − 6552)𝑥3 + (3456. 2𝑛 − 2592)𝑥4 

𝐿𝑥 = (4. 2𝑛 − 4)𝑥2𝑦3 + (8. 2𝑛 − 4)𝑥4𝑦 + (28. 2𝑛 − 16)𝑥4𝑦2

+ (92. 2𝑛 − 56)𝑥4𝑦3 + (12. 2𝑛 − 9)𝑥6𝑦3 

𝐿𝑦 = (4. 2𝑛 − 4)𝑥𝑦6 + (8. 2𝑛 − 4)𝑥2𝑦2 + (28. 2𝑛 − 16)𝑥2𝑦4

+ (92. 2𝑛 − 56)𝑥2𝑦6 + (12. 2𝑛 − 9)𝑥3𝑦6 

𝐽(𝐿𝑥 + 𝐿𝑦) = (8. 2𝑛 − 4)𝑥4 + (12. 2𝑛 − 8)𝑥5 + (56. 2𝑛 − 32)𝑥6

+ (96. 2𝑛 − 60)𝑥7 + (92. 2𝑛 − 56)𝑥8

+ (24. 2𝑛 − 18)𝑥9 

𝑆𝑥𝑄−2𝐽(𝐿𝑥 + 𝐿𝑦)

= (4. 2𝑛 − 2)𝑥2 + (4. 2𝑛 −
8

3
) 𝑥3 + (14. 2𝑛 − 8)𝑥4

+ (
96

5
. 2𝑛 − 12) 𝑥5 + (

92

6
. 2𝑛 −

56

6
) 𝑥6

+ (
24

7
. 2𝑛 −

18

7
)𝑥7 

𝑆𝑥 = (4. 2
𝑛 − 4)𝑥𝑦3 + (4. 2𝑛 − 2)𝑥2𝑦 + (14. 2𝑛 − 8)𝑥2𝑦2

+ (46. 2𝑛 − 28)𝑥2𝑦3 + (4. 2𝑛 − 3)𝑥3𝑦3 

𝑆𝑦 = (
4

3
. 2𝑛 −

4

3
)𝑥𝑦3 + (8. 2𝑛 − 4)𝑥2𝑦 + (14. 2𝑛 − 8)𝑥2𝑦2

+ (
92

3
. 2𝑛 −

56

3
)𝑥2𝑦3 + (4. 2𝑛 − 3)𝑥3𝑦3 
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𝑆𝑥 + 𝑆𝑦 = (
16

3
. 2𝑛 −

16

3
) 𝑥𝑦3 + (12. 2𝑛 − 6)𝑥2𝑦

+ (28. 2𝑛 − 16)𝑥2𝑦2 + (
230

3
. 2𝑛 −

140

3
) 𝑥2𝑦3

+ (8. 2𝑛 − 6)𝑥3𝑦3 

𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦) = (12. 2𝑛 − 16)𝑥 + (
100

3
. 2𝑛 −

100

3
)𝑥2

+ (
230

3
. 2𝑛 −

140

3
) 𝑥3 + (8. 2𝑛 − 6)𝑥4 

𝑆𝑥𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦)

= (12. 2𝑛 − 16)𝑥 + (
100

6
. 2𝑛 −

100

6
) 𝑥2

+ (
230

9
. 2𝑛 −

140

9
) 𝑥3 + (2. 2𝑛 −

3

2
) 𝑥4. 

Hence it is easy to calculate the given topological indices 𝑥 = 1 =

𝑦 = 1, as 𝐵1(𝐺) = 1476. 2𝑛 − 922, 𝐵2(𝐺) = 1948. 2
𝑛 − 1236, 

𝐻𝐵1(𝐺) = 7900. 2𝑛 − 4990, 𝐻𝐵2(𝐺) = 15220. 2
𝑛 − 9740, 

𝑚𝐵1(𝐺) =
12592

210
. 2𝑛 −

1536

42
, 𝑚𝐵2(𝐺) =

1012

18
. 2𝑛 −

855

18
. 

Theorem 2. The topological indices for Organosilicon are given 

by,  

𝐵1(𝐺) =
568

3
. 3𝑛 − 232, 𝐵2(𝐺) =

604

3
. 3𝑛 − 248

𝐻𝐵1(𝐺) =
1208

3
. 3𝑛 − 496, 𝐻𝐵2(𝐺) =

6980

3
. 3𝑛 − 3160

𝑚𝐵1(𝐺) =
554

135
. 3𝑛 −

487

90
, 𝑚𝐵2(𝐺) =

199

45
. 3𝑛 −

206

45
 .

 

Proof.  

The 𝑀- polynomial of Organosilicon is of the form 
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𝑀(𝐺; 𝑥, 𝑦) = (6. 3𝑛 − 6)𝑥2𝑦2 + (4. 3𝑛 − 4)𝑥2𝑦3

+ (
8

3
. 3𝑛 − 4)𝑥3𝑦4. 

Then, 

𝐷𝑥 = (12. 3𝑛 − 12)𝑥2𝑦2 + (8. 3𝑛 − 8)𝑥2𝑦3 + (8. 3𝑛 − 12)𝑥3𝑦4 

𝐷𝑦 = (12. 3𝑛 − 12)𝑥2𝑦2 + (12. 3𝑛 − 12)𝑥2𝑦3

+ (
32

3
. 3𝑛 − 16) 𝑥3𝑦4 

𝐷𝑥 + 𝐷𝑦 = (24. 3𝑛 − 24)𝑥2𝑦2 + (20. 3𝑛 − 20)𝑥2𝑦3

+ (
56

3
. 3𝑛 − 28) 𝑥3𝑦4 

𝐽 = (6. 3𝑛 − 6)𝑥4 + (4. 3𝑛 − 4)𝑥5 + (
8

3
. 3𝑛 − 4) 𝑥7 

2𝐷𝑥𝑄−2𝐽 = (24. 3𝑛 − 24)𝑥2 + (36. 3𝑛 − 36)𝑥3

+ (
200

3
. 3𝑛 − 100) 𝑥5 

𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (48. 3𝑛 − 48)𝑥2 + (60. 3𝑛 − 60)𝑥3

+ (
280

3
. 3𝑛 − 140) 𝑥5 

2𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (96. 3𝑛 − 96)𝑥2 + (120. 3𝑛 − 120)𝑥3

+ (
560

3
. 3𝑛 − 280) 𝑥5 

2𝐷𝑥
2𝑄−2𝐽 = (48. 3𝑛 − 48)𝑥2 + (108. 3𝑛 − 108)𝑥3

+ (
1000

3
. 3𝑛 − 500) 𝑥5 
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𝐷𝑥
2 = (24. 3𝑛 − 24)𝑥2𝑦2 + (16. 3𝑛 − 16)𝑥2𝑦3

+ (24. 3𝑛 − 36)𝑥3𝑦4 

𝐷𝑦
2 = (24. 3𝑛 − 24)𝑥2𝑦2 + (36. 3𝑛 − 36)𝑥2𝑦3

+ (
128

3
. 3𝑛 − 64) 𝑥3𝑦4 

𝐷𝑥
2 + 𝐷𝑦

2 = (48. 3𝑛 − 48)𝑥2𝑦2 + (52. 3𝑛 − 52)𝑥2𝑦3

+ (
200

3
. 3𝑛 − 100) 𝑥3𝑦4 

𝑄−2𝐽(𝐷𝑥
2 + 𝐷𝑦

2)

= (48. 3𝑛 − 48)𝑥2 + (52. 3𝑛 − 52)𝑥3

+ (
200

3
. 3𝑛 − 100) 𝑥5 

𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2 + 𝐷𝑦
2)

= (192. 3𝑛 − 192)𝑥2 + (468. 3𝑛 − 468)𝑥3

+ (
5000

3
. 3𝑛 − 2500) 𝑥5 

𝐿𝑥 = (6. 3𝑛 − 6)𝑥4𝑦2 + (4. 3𝑛 − 4)𝑥4𝑦3 + (
8

3
. 3𝑛 − 4) 𝑥6𝑦4 

𝐿𝑦 = (6. 3𝑛 − 6)𝑥2𝑦4 + (4. 3𝑛 − 4)𝑥2𝑦6 + (
8

3
. 3𝑛 − 4) 𝑥3𝑦8 

𝐽(𝐿𝑥 + 𝐿𝑦) = (12. 3𝑛 − 12)𝑥6 + (4. 3𝑛 − 4)𝑥7 + (4. 3𝑛 − 4)𝑥8

+ (
8

3
. 3𝑛 − 4) 𝑥10 + (

8

3
. 3𝑛 − 4)𝑥11 
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𝑆𝑥𝑄−2𝐽(𝐿𝑥 + 𝐿𝑦)

= (3. 3𝑛 − 3)𝑥4 + (
4

5
. 3𝑛 −

4

5
) 𝑥5

+ (
2

3
. 3𝑛 −

2

3
) 𝑥6 + (

1

3
. 3𝑛 −

1

2
) 𝑥8

+ (
8

27
. 3𝑛 −

4

9
) 𝑥9 

𝑆𝑥 = (3. 3
𝑛 − 3)𝑥2𝑦2 + (2. 3𝑛 − 2)𝑥2𝑦3 + (

8

9
. 3𝑛 −

4

3
) 𝑥3𝑦4 

𝑆𝑦 = (3. 3𝑛 − 3)𝑥2𝑦2 + (
4

3
. 3𝑛 −

4

3
) 𝑥2𝑦3 + (

2

3
. 3𝑛 − 1) 𝑥3𝑦4 

𝑆𝑥 + 𝑆𝑦 = (6. 3
𝑛 − 6)𝑥2𝑦2 + (

10

3
. 3𝑛 −

10

3
) 𝑥2𝑦3

+ (
14

9
. 3𝑛 −

7

3
) 𝑥3𝑦4 

𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦) = (6. 3𝑛 − 6)𝑥2 + (
10

3
. 3𝑛 −

10

3
) 𝑥3

+ (
14

9
. 3𝑛 −

7

3
) 𝑥5 

𝑆𝑥𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦)

= (3. 3𝑛 − 3)𝑥2 + (
10

9
. 3𝑛 −

10

9
)𝑥3

+ (
14

45
. 3𝑛 −

7

45
)𝑥5. 

Hence it is easy to calculate the given topological indices 𝑥 = 1 =

𝑦 = 1, as 𝐵1(𝐺) =
568

3
. 3𝑛 − 232, 𝐵2(𝐺) =

604

3
. 3𝑛 − 248, 

𝐻𝐵1(𝐺) =
1208

3
. 3𝑛 − 496, 𝐻𝐵2(𝐺) =

6980

3
. 3𝑛 − 3160, 

𝑚𝐵1(𝐺) =
554

135
. 2𝑛 −

487

90
, 𝑚𝐵2(𝐺) =

199

45
. 2𝑛 −

206

45
. 
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Computation of Topological Coindices with the help of 𝑪𝒐𝑴-

Polynomials on Tetrathiafulvalene and Organosilicon 

Dendrimers  

Theorem 3. The topological indices for Tetrathiafulvalene are 

given by,  

𝐵1̅̅ ̅(𝐺) = 10876. 2
2𝑛 + 7232. 2𝑛 + 2658, 𝐵2̅̅ ̅(𝐺) = 16240. 2

2𝑛 + 10046. 2𝑛 + 3436

𝐻𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 67560. 22𝑛 + 42009. 2𝑛 + 14807, 𝐻𝐵2̅̅ ̅̅ ̅̅ (𝐺) = 144544. 22𝑛 + 94866. 2𝑛 + 32428

𝑚𝐵1̅̅ ̅̅ ̅̅ (𝐺) =
5835

14
. 22𝑛 +

102387

420
. 2𝑛 +

18163

140
, 𝑚𝐵2̅̅ ̅̅ ̅̅ (𝐺) =

1049

3
. 22𝑛 +

5899

18
. 2𝑛 +

279

2
 .

 

Proof.  

The 𝐶𝑜𝑀- polynomial of Tetrathiafulvalene is of the form 

𝐶𝑜𝑀(𝐺; 𝑥, 𝑦) = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦

+ (32. 22𝑛 + 32. 2𝑛 + 44)𝑥2𝑦2

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥2𝑦3

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥3𝑦3. 

Then, 

𝐷𝑥 = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥𝑦3

+ (96. 22𝑛 + 144. 2𝑛 + 72)𝑥2𝑦

+ (64. 22𝑛 + 64. 2𝑛 + 88)𝑥2𝑦2

+ (480. 22𝑛 + 414. 2𝑛 + 240)𝑥2𝑦3

+ (1350. 22𝑛 + 639. 2𝑛 + 111)𝑥3𝑦3 

𝐷𝑦 = (540. 22𝑛 + 492. 2𝑛 + 108)𝑥𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦

+ (64. 22𝑛 + 64. 2𝑛 + 88)𝑥2𝑦2

+ (720. 22𝑛 + 636. 2𝑛 + 360)𝑥2𝑦3

+ (1350. 22𝑛 + 639. 2𝑛 + 111)𝑥3𝑦3 
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𝐷𝑥 + 𝐷𝑦 = (720. 22𝑛 + 656. 2𝑛 + 144)𝑥𝑦3

+ (144. 22𝑛 + 216. 2𝑛 + 108)𝑥2𝑦

+ (128. 22𝑛 + 128. 2𝑛 + 176)𝑥2𝑦2

+ (1200. 22𝑛 + 1050. 2𝑛 + 600)𝑥2𝑦3

+ (2700. 22𝑛 + 1278. 2𝑛 + 222)𝑥3𝑦3 

𝐽 = (48. 22𝑛 + 72. 2𝑛 + 36)𝑥3 + (212. 22𝑛 + 196. 2𝑛 + 80)𝑥4

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥5

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥6 

2𝐷𝑥𝑄−2𝐽 = (96. 22𝑛 + 144. 2𝑛 + 72)𝑥

+ (848. 22𝑛 + 784. 2𝑛 + 320)𝑥2

+ (1440. 22𝑛 + 1272. 2𝑛 + 720)𝑥3

+ (3600. 22𝑛 + 1704. 2𝑛 + 296)𝑥4 

𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (144. 22𝑛 + 216. 2𝑛 + 108)𝑥

+ (1696. 22𝑛 + 1568. 2𝑛 + 640)𝑥2

+ (3600. 22𝑛 + 3150. 2𝑛 + 1800)𝑥3

+ (10800. 22𝑛 + 5112. 2𝑛 + 888)𝑥4 

2𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (288. 22𝑛 + 432. 2𝑛 + 216)𝑥

+ (3392. 22𝑛 + 3136. 2𝑛 + 1280)𝑥2

+ (7200. 22𝑛 + 6300. 2𝑛 + 3600)𝑥3

+ (21600. 22𝑛 + 10224. 2𝑛 + 1776)𝑥4 

2𝐷𝑥
2𝑄−2𝐽 = (192. 22𝑛 + 288. 2𝑛 + 144)𝑥

+ (1696. 22𝑛 + 1568. 2𝑛 + 720)𝑥2

+ (4320. 22𝑛 + 3816. 2𝑛 + 2160)𝑥3

+ (14400. 22𝑛 + 6816. 2𝑛 + 1184)𝑥4 
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𝐷𝑥
2 = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥𝑦3

+ (192. 22𝑛 + 288. 2𝑛 + 144)𝑥2𝑦

+ (128. 22𝑛 + 128. 2𝑛 + 176)𝑥2𝑦2

+ (960. 22𝑛 + 828. 2𝑛 + 480)𝑥2𝑦3

+ (2700. 22𝑛 + 1278. 2𝑛 + 222)𝑥3𝑦3 

𝐷𝑦
2 = (1620. 22𝑛 + 1476. 2𝑛 + 324)𝑥𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦

+ (128. 22𝑛 + 128. 2𝑛 + 176)𝑥2𝑦2

+ (2160. 22𝑛 + 3150. 2𝑛 + 1800)𝑥2𝑦3

+ (4050. 22𝑛 + 1917. 2𝑛 + 333)𝑥3𝑦3 

𝐷𝑥
2 + 𝐷𝑦

2 = (1800. 22𝑛 + 1640. 2𝑛 + 360)𝑥𝑦3

+ (240. 22𝑛 + 360. 2𝑛 + 180)𝑥2𝑦

+ (256. 22𝑛 + 256. 2𝑛 + 352)𝑥2𝑦2

+ (3120. 22𝑛 + 3978. 2𝑛 + 2280)𝑥2𝑦3

+ (6750. 22𝑛 + 3195. 2𝑛 + 555)𝑥3𝑦3 

𝑄−2𝐽(𝐷𝑥
2 + 𝐷𝑦

2)

= (240. 22𝑛 + 360. 2𝑛 + 180)𝑥

+ (2056. 22𝑛 + 1896. 2𝑛 + 712)𝑥2

+ (3120. 22𝑛 + 3978. 2𝑛 + 2280)𝑥3

+ (6750. 22𝑛 + 3195. 2𝑛 + 555)𝑥4 

𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2 + 𝐷𝑦
2)

= (240. 22𝑛 + 360. 2𝑛 + 180)𝑥

+ (8224. 22𝑛 + 7584. 2𝑛 + 2848)𝑥2

+ (28080. 22𝑛 + 35802. 2𝑛 + 20520)𝑥3

+ (108000. 22𝑛 + 51120. 2𝑛 + 8880)𝑥4 
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𝐿𝑥 = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥2𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥4𝑦

+ (32. 22𝑛 + 32. 2𝑛 + 44)𝑥4𝑦2

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥4𝑦3

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥6𝑦3 

𝐿𝑦 = (180. 22𝑛 + 164. 2𝑛 + 36)𝑥𝑦6

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦2

+ (32. 22𝑛 + 32. 2𝑛 + 44)𝑥2𝑦4

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥2𝑦6

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥3𝑦6 

𝐽(𝐿𝑥 + 𝐿𝑦) = (48. 22𝑛 + 72. 2𝑛 + 36)𝑥4

+ (228. 22𝑛 + 236. 2𝑛 + 72)𝑥5

+ (514. 22𝑛 + 277. 2𝑛 + 125)𝑥6

+ (420. 22𝑛 + 376. 2𝑛 + 156)𝑥7

+ (240. 22𝑛 + 212. 2𝑛 + 120)𝑥8

+ (450. 22𝑛 + 213. 2𝑛 + 37)𝑥9 

𝑆𝑥𝑄−2𝐽(𝐿𝑥 + 𝐿𝑦)

= (24. 22𝑛 + 36. 2𝑛 + 18)𝑥2

+ (76. 22𝑛 +
236

3
. 2𝑛 + 24) 𝑥3

+ (
257

2
22𝑛 +

277

4
. 2𝑛 +

125

4
)𝑥4

+ (84. 22𝑛 +
376

5
. 2𝑛 +

156

5
)𝑥5

+ (40. 22𝑛 +
212

6
. 2𝑛 + 20) 𝑥6

+ (
450

7
. 22𝑛 +

213

7
. 2𝑛 +

37

7
)𝑥7 
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𝑆𝑥 = (180. 2
2𝑛 + 164. 2𝑛 + 36)𝑥𝑦3

+ (24. 22𝑛 + 36. 2𝑛 + 18)𝑥2𝑦

+ (16. 22𝑛 + 16. 2𝑛 + 22)𝑥2𝑦2

+ (120. 22𝑛 + 106. 2𝑛 + 60)𝑥2𝑦3

+ (150. 22𝑛 + 71. 2𝑛 +
37

3
)𝑥3𝑦3 

𝑆𝑦 = (60. 22𝑛 +
164

3
. 2𝑛 + 12) 𝑥𝑦3

+ (48. 22𝑛 + 72. 2𝑛 + 36)𝑥2𝑦

+ (16. 22𝑛 + 16. 2𝑛 + 22)𝑥2𝑦2

+ (80. 22𝑛 +
212

3
. 2𝑛 + 40) 𝑥2𝑦3

+ (150. 22𝑛 + 71. 2𝑛 +
37

3
)𝑥3𝑦3 

𝑆𝑥 + 𝑆𝑦 = (240. 2
2𝑛 +

656

3
. 2𝑛 + 48) 𝑥𝑦3

+ (72. 22𝑛 + 108. 2𝑛 + 54)𝑥2𝑦

+ (32. 22𝑛 + 32. 2𝑛 + 44)𝑥2𝑦2

+ (200. 22𝑛 +
530

3
. 2𝑛 + 100) 𝑥2𝑦3

+ (300. 22𝑛 + 142. 2𝑛 +
74

3
)𝑥3𝑦3 

𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦) = (72. 22𝑛 + 108. 2𝑛 + 54)𝑥2

+ (272. 22𝑛 +
752

3
. 2𝑛 + 92) 𝑥2

+ (200. 22𝑛 +
530

3
. 2𝑛 + 100) 𝑥3

+ (300. 22𝑛 + 142. 2𝑛 +
74

3
)𝑥4 
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𝑆𝑥𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦)

= (72. 22𝑛 + 108. 2𝑛 + 54)𝑥

+ (136. 22𝑛 +
376

3
. 2𝑛 + 46) 𝑥2

+ (
200

3
. 22𝑛 +

530

9
. 2𝑛 +

100

3
) 𝑥3

+ (75. 22𝑛 +
71

2
. 2𝑛 +

37

6
) 𝑥4𝑥4. 

Hence it is easy to calculate the given topological indices 𝑥 = 1 =

𝑦 = 1, as 𝐵1̅̅ ̅(𝐺) = 10876. 22𝑛 + 7232. 2𝑛 + 2658, 𝐵2(𝐺)̅̅ ̅̅ ̅̅ ̅̅ =

16240. 22𝑛 + 10046. 2𝑛 + 3436, 𝐻𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 67560. 22𝑛 +

42009. 2𝑛 + 14807                   𝐻𝐵2̅̅ ̅̅ ̅̅ (𝐺) = 144544. 22𝑛 +

94866. 2𝑛 + 32428, 𝑚𝐵1̅̅ ̅̅ ̅̅ (𝐺) =
5835

14
. 22𝑛 +

102387

420
. 2𝑛 +

18163

140
, 

𝑚𝐵̅̅̅̅̅2(𝐺) =
1049

3
. 22𝑛 +

5899

18
. 2𝑛 +

279

2
. 

Theorem 4. The topological coindices for Organosilicon are given 

by,  

𝐵1̅̅ ̅(𝐺) = 3524. 32𝑛−2 + 2582. 3𝑛−1 + 526, 𝐵2̅̅ ̅(𝐺) = 6644. 32𝑛−2 − 4318. 3𝑛−1 + 798

𝐻𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 27436. 32𝑛−2 − 17542. 3𝑛−1 + 3182, 𝐻𝐵2̅̅ ̅̅ ̅̅ (𝐺) = 107596. 32𝑛−2 − 60290. 3𝑛−1 + 8718

𝑚𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 619. 32𝑛−4 +
6437

10
. 3𝑛−3 +

277

15
, 𝑚𝐵2̅̅ ̅̅ ̅̅ (𝐺) = 187. 32𝑛−2 −

997

2
. 3𝑛−1 +

1421

90
 .

 

Proof.  

The 𝐶𝑜𝑀- polynomial of Organosilicon is of the form 

𝐶𝑜𝑀(𝐺; 𝑥, 𝑦) = (2. 32𝑛 − 17. 3𝑛 + 21)𝑥2𝑦2

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥2𝑦3

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥3𝑦4. 

Then, 
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𝐷𝑥 = (4. 32𝑛 − 34. 3𝑛 + 42)𝑥2𝑦2

+ (
40

3
. 32𝑛 −

148

3
. 3𝑛 + 28) 𝑥2𝑦3

+ (
480

9
. 32𝑛 − 80. 3𝑛 + 36) 𝑥3𝑦4 

𝐷𝑦 = (4. 32𝑛 − 34. 3𝑛 + 42)𝑥2𝑦2 + (20. 32𝑛 − 74. 3𝑛 + 42)𝑥2𝑦3

+ (
640

9
. 32𝑛 −

320

3
. 3𝑛 + 48) 𝑥3𝑦4 

𝐷𝑥 + 𝐷𝑦 = (8. 32𝑛 − 68. 3𝑛 + 84)𝑥2𝑦2

+ (
100

3
. 32𝑛 −

370

3
. 3𝑛 + 70) 𝑥2𝑦3

+ (
1120

9
. 32𝑛 −

5600

3
. 3𝑛 + 84) 𝑥3𝑦4 

𝐽 = (2. 32𝑛 − 17. 3𝑛 + 21)𝑥4 + (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥5

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥7 

2𝐷𝑥𝑄−2𝐽 = (8. 32𝑛 − 68. 3𝑛 + 84)𝑥2

+ (40. 32𝑛 −
148

3
. 3𝑛 + 84) 𝑥3

+ (
1600

9
. 32𝑛 −

800

3
. 3𝑛 + 120) 𝑥5 

𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (16. 32𝑛 − 136. 3𝑛 + 168)𝑥2

+ (100. 32𝑛 − 370. 3𝑛 + 210)𝑥3

+ (
5600

9
. 32𝑛 −

2800

3
. 3𝑛 + 420) 𝑥5 
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2𝐷𝑥𝑄−2𝐽(𝐷𝑥 + 𝐷𝑦)

= (32. 32𝑛 − 272. 3𝑛 + 336)𝑥2

+ (200. 32𝑛 − 740. 3𝑛 + 420)𝑥3

+ (
11200

9
. 32𝑛 −

5600

3
. 3𝑛 + 840) 𝑥5 

2𝐷𝑥
2𝑄−2𝐽 = (16. 32𝑛 − 68. 3𝑛 + 84)𝑥2

+ (120. 32𝑛 − 444. 3𝑛 + 252)𝑥3

+ (
8000

9
. 32𝑛 −

4000

3
. 3𝑛 + 600) 𝑥5 

𝐷𝑥
2 = (8. 32𝑛 − 68. 3𝑛 + 84)𝑥2𝑦2

+ (
80

3
. 32𝑛 −

296

3
. 3𝑛 + 56) 𝑥2𝑦3

+ (
1440

9
. 32𝑛 − 240. 3𝑛 + 108) 𝑥3𝑦4 

𝐷𝑦
2 = (8. 32𝑛 − 68. 3𝑛 + 84)𝑥2𝑦2

+ (60. 32𝑛 − 222. 3𝑛 + 126)𝑥2𝑦3

+ (
2560

9
. 32𝑛 −

1280

3
. 3𝑛 + 192) 𝑥3𝑦4 

𝐷𝑥
2 + 𝐷𝑦

2 = (16. 32𝑛 − 136. 3𝑛 + 168)𝑥2𝑦2

+ (
260

3
. 32𝑛 −

962

3
. 3𝑛 + 182) 𝑥2𝑦3

+ (
4000

9
. 32𝑛 −

2000

3
. 3𝑛 + 300) 𝑥3𝑦4 

𝑄−2𝐽(𝐷𝑥
2 + 𝐷𝑦

2)

= (16. 32𝑛 − 136. 3𝑛 + 168)𝑥2

+ (
260

3
. 32𝑛 −

962

3
. 3𝑛 + 182) 𝑥3

+ (
4000

9
. 32𝑛 −

2000

3
. 3𝑛 + 300) 𝑥5 
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𝐷𝑥
2𝑄−2𝐽(𝐷𝑥

2 + 𝐷𝑦
2)

= (64. 32𝑛 − 544. 3𝑛 + 672)𝑥2

+ (780. 32𝑛 − 2886. 3𝑛 + 546)𝑥3

+ (
100000

9
. 32𝑛 −

500000

3
. 3𝑛 + 7500) 𝑥5 

𝐿𝑥 = (2. 32𝑛 − 17. 3𝑛 + 21)𝑥4𝑦2

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥4𝑦3

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥6𝑦4 

𝐿𝑦 = (2. 32𝑛 − 17. 3𝑛 + 21)𝑥2𝑦4

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥2𝑦6

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥3𝑦8 

𝐽(𝐿𝑥 + 𝐿𝑦) = (4. 32𝑛 − 34. 3𝑛 + 42)𝑥6

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥7

+ (
20

3
. 32𝑛 −

74

3
. 3𝑛 + 14) 𝑥8

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥10

+ (
160

9
. 32𝑛 −

80

3
. 3𝑛 + 12) 𝑥11 
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𝑆𝑥𝑄−2𝐽(𝐿𝑥 + 𝐿𝑦)

= (3. 32𝑛 −
34

3
. 3𝑛 +

42

4
)𝑥4

+ (
4

3
. 32𝑛 −

74

15
. 3𝑛 +

14

5
) 𝑥7

+ (
10

3
. 32𝑛 −

74

18
. 3𝑛 +

7

3
) 𝑥8

+ (
20

9
. 32𝑛 −

10

3
. 3𝑛 +

3

2
) 𝑥10

+ (
160

81
. 32𝑛 −

80

27
. 3𝑛 +

4

3
) 𝑥11 

𝑆𝑥 = (3. 3
2𝑛 −

17

2
. 3𝑛 +

21

2
) 𝑥2𝑦2

+ (
10

3
. 32𝑛 −

37

3
. 3𝑛 + 7) 𝑥2𝑦3

+ (
160

27
. 32𝑛 −

80

9
. 3𝑛 + 4) 𝑥3𝑦4 

𝑆𝑦 = (3. 32𝑛 −
17

2
. 3𝑛 +

21

2
)𝑥2𝑦2

+ (
20

9
. 32𝑛 −

74

9
. 3𝑛 +

14

3
) 𝑥2𝑦3

+ (
40

9
. 32𝑛 −

20

3
. 3𝑛 + 3) 𝑥3𝑦4 

𝑆𝑥 + 𝑆𝑦 = (6. 3
2𝑛 − 17. 3𝑛 + 21)𝑥2𝑦2

+ (
50

9
. 32𝑛 −

185

9
. 3𝑛 +

35

3
)𝑥2𝑦3

+ (
280

27
. 32𝑛 −

140

9
. 3𝑛 + 7) 𝑥3𝑦4 
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𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦)

= (6. 32𝑛 − 17. 3𝑛 + 21)𝑥2

+ (
50

9
. 32𝑛 −

185

9
. 3𝑛 +

35

3
)𝑥3

+ (
280

27
. 32𝑛 −

140

9
. 3𝑛 + 7) 𝑥5 

𝑆𝑥𝑄−2𝐽(𝑆𝑥 + 𝑆𝑦)

= (3. 32𝑛 −
17

2
. 3𝑛 + 21) 𝑥2

+ (
50

27
. 32𝑛 −

185

27
. 3𝑛 +

35

9
)𝑥3

+ (
56

27
. 32𝑛 −

28

9
. 3𝑛 +

7

5
) 𝑥5 

Hence it is easy to calculate the given topological indices 𝑥 = 1 =

𝑦 = 1, as                                          𝐵1(𝐺) = 3524. 32𝑛−2 +

2582. 3𝑛−1 + 526, 𝐵2̅̅ ̅(𝐺) = 6644. 3
2𝑛−2 − 4318. 3𝑛−1 + 798, 

𝐻𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 27436. 32𝑛−2 − 17542. 3𝑛−1 + 3182, 𝐻𝐵2̅̅ ̅̅ ̅̅ (𝐺) =

107596. 32𝑛−2 − 60290. 3𝑛−1 + 8718, 𝑚𝐵1̅̅ ̅̅ ̅̅ (𝐺) = 619. 32𝑛−4 −
6437

10
. 3𝑛−3 +

277

15
,  𝑚𝐵2̅̅ ̅̅ ̅̅ (𝐺) = 187. 32𝑛−3 −

997

2
. 3𝑛−3 +

1421

90
. 

Numerical and Graphical Comparison 

In this section we aim to show the relation between related 

Banhatti indices and coindices percebtibly, via numerical and 

graphical comparison figures in Figure 4 and Figure 5. It is seen that 

in each graphic, new defined Banhatti topological coindices 

increase/decreases rapidly than existing Banhatti topological 

indices. For Tetrathiafulvalene dendrimer, each graphic has 

increasing curvilinear model for both related indices and coindices. 

But for Organosilicon dendrimer, while only (modified) first K 

Banhatti indices and coindices have been incresing at the same time, 

the other ones are of decreased coindex lines while indices are of 

increased lines. These results are of guiding significance to the 

engineering application. 
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Figure 4. Numerical and Graphical Comparison of Organosilicon 
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Figure 5. Numerical and Graphical Comparison of 

Tetrathiafulvalene Dendrimer 
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6. Summarization and Conclusion 

Topological indices are widely used calculation tools to 

predict physicochemical and bioactivity properties of chemical 

compunds. They have many applications in medical and material 

sciences via QSPR/QSAR analysis to deisgn high performanced, 

low cost products. Nowadays researchers have been interested in 

studies on optical applications via topological approach. Also, 

dendrimers are investigated as an effective conductor because of its 

more branched structure. Motivated by these, in this work we handle 

six types of Banhatti indices and we define topological coindex 

versions via complement graph theory.  Afterward, we produce the 

𝑀 and 𝐶𝑜𝑀-polynomials of two specific dentritic compounds from 

molecular graphs of each compund via vertex and each partition 

technique. By algebraic polynomial approach, we compute all 

indices and coindices. At the end we give comparisonal figures 

showing that the performance between topological indices and 

coindices. We hope these representations and numerical datas may 

be helpful for testing the efficiency of optical applications of 

dendrimers in the future. 
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CHAPTER VI 

 

 

On the Higher Order Leonardo Quaternions 

 

 

 

 

Kübra GÜL1 

 

Introduction 

Number sequences have an important place and their 

applications in various scientific fields in the literature (Abrate, 

Barbero, Cerruti, & Murru, 2014; Amannah & Nanwin, 2014; 

Falcon, & Plaza, 2007; Koshy, 2001; Shannon, Deveci & Erdağ, 

2019). The most famous of these sequences are the Fibonacci 

sequences {𝐹𝑛}𝑛=0
∞  and Lucas sequences {𝐿𝑛}𝑛=0

∞  defined by, 𝑛 ≥
2, 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

and 

𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 

, where 𝐹0 = 0, 𝐹1 = 1 and 𝐿0 = 2, 𝐿1 = 1, respectively. 

 
1 Assoc. Prof. Dr, Kafkas University, Orcid: 0000-0002-8732-5718 
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In (Catarino & Borges, 2019), Leonardo sequence {ℒ𝑛}𝑛=0
∞  is 

defined by 

ℒ𝑛 = ℒ𝑛−1 + ℒ𝑛−2 + 1 n ≥ 2, ℒ0 = ℒ1 = 1. 
Also, Leonardo sequence is given by the equation 

ℒ𝑛+1 = 2ℒ𝑛 − ℒ𝑛−2. 
The characteristic equation of the equation (4) is 

𝜆3 − 2𝜆2  + 1 =  0. 

The Binet’s formula of the Leonardo sequence is 

 ℒ𝑛 =
2𝛼𝑛+1−2𝛽𝑛+1−𝛼+𝛽

𝛼−𝛽
                                                          (1) 

where 𝛼 and 𝛽 are roots of characteristic equation. 

There are the relationships between Leonardo numbers, 

Fibonacci numbers and Lucas numbers as follows: 

ℒ𝑛 = 2𝐹𝑛+1 − 1, 
ℒ𝑛−1 + ℒ𝑛+1 = 2𝐿𝑛+1 − 2, 

ℒ𝑛 + 2𝐹𝑛 = ℒ𝑛+1, 
ℒ𝑛 + 𝐹𝑛 + 𝐿𝑛 = 2ℒ𝑛 + 1, 

ℒ𝑛+1
2 + ℒ𝑛

2 = 2(ℒ2𝑛+2 − ℒ𝑛+2 + 1). 

Several identities for Leonardo numbers were obtained by 

authors. Furthermore, they provided Leonardo numbers with a 

matrix representation. Some recent resarch on Leonardo numbers 

can be seen in (Alp & Koçer, 2021; Catarino & Borges, 2019). 

In recent years, several authors investigated on higher order 

sequences associated with the well known number sequences. The 

study of higher order sequences began with the earlier work of 

Randi´c et al. (Randić, Morales & Araujo, 1996) where the authors 
investigated higher order Fibonacci numbers and its various 

algebraic properties. Cook et al. (Cook & Bacon, 2013) defined 

Jacobsthal higher order numbers. In (Prasad, Kumari, Mohanta, & 

Mahato, 2023), the authors introduced Mersenne higher order 

numbers and gave various algebraic properties.  In the literature, 

there are several studies on higher order sequences associated with 

the diferent sequences and their generalizations. Gül (Gül, 2023) 

introduced higher order Leonardo numbers. Kizilateş and Kone 

(Kizilates & Kone, 2021a) expanded the quaternion algebraic 
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research to higher order Fibonacci numbers. Then, the authors 

invastigated hyper complex numbers and quaternions with the higher 

order sequences ( Gül, 2022; Kizilates & Kone, 2021b; 

Ozimamoğlu, 2023; Özkan & Uysal, 2023).  

Quaternions were investigated by Hamilton (Hamilton, 1866) as 

an extension to the complex numbers. A quaternion is defined by 

𝑞 = 𝑎0 + 𝑎1𝕚 + 𝑎2𝕛 + 𝑎3𝕜                                             (2) 

 

where 𝑎0 , 𝑎1, 𝑎2 , 𝑎3  are real numbers and 𝕚, 𝕛, 𝕜 are quaternionic 

units which satisfy the following rules: 

 𝕚2 = 𝕛2 = 𝕜2 = 𝕚𝕛𝕜 = −1 and 𝕚𝕛 = 𝕜 = −𝕛𝕚, 𝕛𝕜 = 𝕚 =
−𝕜𝕛,𝕜𝕚 = 𝕛 = −𝕚𝕜. (3) 

Several authors studied on different quaternions and their 

generalizations, some of which can be found in (Asci & Aydinyuz, 

2021; Gül, 2019; Gül, 2020; Halici, 2012 Horadam, 1963). Paulı 

Leonardo quaternion was defined by Leonardo numbers coefficients 

(Isbilir & Tosun, 2023). Nurkan et al. (Nurkan & Güven, 2023) 

introduced ordered Leonardo quadruple numbers by dual 

quaternions and Leonardo numbers. Then, Yılmaz et al. (Yılmaz & 

Saçlı, 2023) studied the dual quaternions with the 𝑘 -generalized 

Leonardo sequence.  

In this study, we introduce a new type of quaternions, called the 

higher order Leonardo quaternions. We consider the coefficients of 

these quaternions as the higher order Leonardo numbers. We give 

Binet formula, generating function, several identities for this 

sequence. 

 

Main Results 

For positive integer 𝑘 , the higher order Leonardo numbers 

{ℒ𝑛
(𝑘)} are defined by 

ℒ𝑛
(𝑘)
=

ℒ𝑘𝑛

ℒ𝑘
 ,       𝑛 = 0,1,2… .                                               (4) 
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In (Gül, 2023), the Binet’s formula of the higher order Leonardo 

numbers ℒ𝑛
(𝑘)

 can be written as 

ℒ𝑛
(𝑘)
=

2𝛼𝑘𝑛+1−2𝛽𝑘𝑛+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
.                                                    (5) 

In (Mangueira, Alves & Catarino, 2022), Leonardo quaternion, 

denoted by ℒ𝑄𝑛, are defined by 

ℒ𝑄𝑛 = ℒ𝑛 + ℒ𝑛+1𝕚 + ℒ𝑛+2𝕛 + ℒ𝑛+3𝕜. 

The Binet’s formula of the Leonardo quaternions 

ℒ𝑄𝑛 =
2𝛼𝑛+1�̂�−2𝛽𝑛+1�̂�+𝑤(−𝛼+𝛽)

𝛼−𝛽
                                                       (6) 

where �̂� = 1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜 , �̂� = 1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜 

and 𝑤 = 1 + 𝕚 + 𝕛 + 𝕜. 

Definition 1. The higher order Leonardo quaternions {ℒ𝑄𝑛
(𝑘)}, 𝑛 ∈

ℝ, is defined as 

ℒ𝑄𝑛
(𝑘)
= ℒ𝑛

(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 + ℒ𝑛+2

(𝑘)
𝕛 + ℒ𝑛+3

(𝑘)
𝕜                            (7) 

where 𝕚, 𝕛, 𝕜 are quaternionic units and ℒ𝑛
(𝑘)

 is 𝑛th the higher order 

Leonardo numbers.  

If it is taken as 𝑘 =  1, the higher-order Leonardo quaternions  ℒ𝑄𝑛
(1)

 

is called as the Leonardo quaternions. 

The real and imaginary parts of the higher-order Leonardo 

quaternions are as follows: 

Re(ℒ𝑄𝑛
(𝑘)) = ℒ𝑛

(𝑘), 

Im(ℒ𝑄𝑛
(𝑘)) = ℒ𝑛+1

(𝑘) 𝕚 + ℒ𝑛+2
(𝑘) 𝕛 + ℒ𝑛+3

(𝑘)
𝕜 

, respectively.  

The conjugate of the higher-order Leonardo quaternion, denoted by 

ℒ𝑄𝑛
(𝑘)

, is given by  ℒ𝑄𝑛
(𝑘)
= ℒ𝑛

(𝑘)
− ℒ𝑛+1

(𝑘) 𝕚 − ℒ𝑛+2
(𝑘) 𝕛 − ℒ𝑛+3

(𝑘) 𝕜. 
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The norm of the higher-order Leonardo quaternion, denoted by 

𝑁(ℒ𝑄𝑛
(𝑘)
), is given by   

𝑁(ℒ𝑄𝑛
(𝑘)) =  ℒ𝑄𝑛

(𝑘)ℒ𝑄𝑛
(𝑘)

= (ℒ𝑛
(𝑘)
)2 + (ℒ𝑛+1

(𝑘)
)2 + (ℒ𝑛+2

(𝑘)
)2 + (ℒ𝑛+3

(𝑘)
)2. 

Proposition 2. The higher-order Leonardo quaternions satisfy the 

following identity: 

(ℒ𝑄𝑛
(𝑘)
)2 = −ℒ𝑄𝑛

(𝑘)ℒ𝑄𝑛
(𝑘) + 2ℒ𝑛

(𝑘)ℒ𝑄𝑛
(𝑘). 

Proof. From the definition of ℒ𝑄𝑛
(𝑘)

, we have   

 (ℒ𝑄𝑛
(𝑘)
)
2

= (ℒ𝑛
(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 + ℒ𝑛+2

(𝑘)
𝕛 + ℒ𝑛+3

(𝑘)
𝕜)(ℒ𝑛

(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 +

ℒ𝑛+2
(𝑘)

𝕛 + ℒ𝑛+3
(𝑘)

𝕜) 

          = (ℒ𝑛
(𝑘)
)2 − (ℒ𝑛+1

(𝑘)
)2 − (ℒ𝑛+2

(𝑘)
)2 − (ℒ𝑛+3

(𝑘)
)2 +

2ℒ𝑛
(𝑘)(ℒ𝑛+1

(𝑘) 𝕚 + ℒ𝑛+2
(𝑘) 𝕛 + ℒ𝑛+3

(𝑘) 𝕜) 

          = (ℒ𝑛
(𝑘))2 − (ℒ𝑛+1

(𝑘) )2 − (ℒ𝑛+2
(𝑘) )2 − (ℒ𝑛+3

(𝑘) )2 +

2ℒ𝑛
(𝑘)(ℒ𝑛+1

(𝑘) 𝕚 + ℒ𝑛+2
(𝑘) 𝕛 + ℒ𝑛+3

(𝑘) 𝕜) 

          = −(ℒ𝑛
(𝑘)
)2 − (ℒ𝑛+1

(𝑘)
)2 − (ℒ𝑛+2

(𝑘)
)2 − (ℒ𝑛+3

(𝑘)
)2 +

2ℒ𝑛
(𝑘)
(ℒ𝑛

(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 + ℒ𝑛+2

(𝑘)
𝕛 + ℒ𝑛+3

(𝑘)
𝕜)            

          = −ℒ𝑄𝑛
(𝑘)
ℒ𝑄𝑛

(𝑘)
+ 2ℒ𝑛

(𝑘)
ℒ𝑄𝑛

(𝑘)
. 

Theorem 3. The Binet’s formula of the higher order Leonardo 

quaternions ℒ𝑛
(𝑘)

 is given by 

ℒ𝑄𝑛
(𝑘)
=

2𝛼𝑘𝑛+1�̂�−2𝛽𝑘𝑛+1�̂�+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
                                         (8) 

where �̂� = 1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜 , �̂� = 1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜 

and 𝑤 = 1 + 𝕚 + 𝕛 + 𝕜. 

Proof. Using the equations (6) and (7), we obtain  
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 ℒ𝑄𝑛
(𝑘) = ℒ𝑛

(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 + ℒ𝑛+2

(𝑘)
𝕛 + ℒ𝑛+3

(𝑘)
𝕜 

            =
2𝛼𝑘𝑛+1−2𝛽𝑘𝑛+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
+
2𝛼𝑘𝑛+𝑘+1−2𝛽𝑘𝑛+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕚 +

2𝛼𝑘𝑛+2𝑘+1−2𝛽𝑘𝑛+2𝑘+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕛 +

2𝛼𝑘𝑛+3𝑘+1−2𝛽𝑘𝑛+3𝑘+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕜 

           =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
(2𝛼𝑘𝑛+1(1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 +

𝛼3𝑘𝕜) − 2𝛽𝑘𝑛+1(1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜) − 𝛼 + 𝛽(1 + 𝕚 + 𝕛 +
𝕜)) 

         =
2𝛼𝑘𝑛+1�̂�−2𝛽𝑘𝑛+1�̂�+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
. 

Theorem 4.  For the higher order Leonardo quaternions, the 

following relation holds:   

  ℒ𝑄𝑛+1
(𝑘)

=
1

2
(ℒ𝑘ℒ𝑄𝑛

(𝑘) − (−1)𝑘ℒ𝑄𝑛−1
(𝑘) +

1

5
ℒ𝑘
−1[−4𝐾𝑘𝑛+𝑘 +

2(−1)𝑘+1𝐾𝑘𝑛−𝑘+1] + ℒ𝑄𝑛
(𝑘)
+ 𝑤(1 − ℒ𝑘

−1(3 − (−1)𝑘))). 

where 𝐾𝑛 is the 𝑛th Lucas quaternion.       

Proof. From  the Binet formulas (1) and (8), we obtain as follows:     

ℒ𝑘ℒ𝑄𝑛
(𝑘)
− (−1)𝑘ℒ𝑄𝑛−1

(𝑘) =
2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽

𝛼−𝛽

2𝛼𝑘𝑛+1�̂�−2𝛽𝑘𝑛+1�̂�+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
−

(𝛼𝛽)𝑘
2𝛼𝑘𝑛−𝑘+1�̂�−2𝛽𝑘𝑛−𝑘+1�̂�+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
  

 =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)(𝛼−𝛽)
(�̂�(4𝛼𝑘𝑛+𝑘+2 − 4𝛼𝑘𝑛+1𝛽𝑘+1 −

2𝛼𝑘𝑛+2 + 2𝛽𝛼𝑘𝑛+1 − 2𝛽𝑘𝛼𝑘𝑛+2 + 2𝛽𝑘+1𝛼𝑘𝑛+1) +

�̂�(4𝛽𝑘𝑛+𝑘+2 − 4𝛼𝑘+1𝛽𝑘𝑛+1 − 2𝛽𝑘𝑛+2 + 2𝛼𝛽𝑘𝑛+1 +
2𝛽𝑘𝑛+1𝛼𝑘+1 − 2𝛽𝑘𝑛+2𝛼𝑘) + 𝑤(−𝛼 + 𝛽)(2𝛼𝑘+1 − 2𝛽𝑘+1 − 𝛼 +

𝛽 − 𝛼𝑘+1𝛽𝑘 + 𝛼𝑘𝛽𝑘+1)) 

 =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)(𝛼−𝛽)
(2(𝛼 − 𝛽)(2�̂�𝛼𝑘𝑛+𝑘+1 −

2�̂�𝛽𝑘𝑛+𝑘+1) + 4�̂�𝛼𝛽𝑘𝑛+𝑘+1 + 4�̂�𝛽𝛼𝑘𝑛+𝑘+1 −
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2�̂�(𝛼𝛽)𝑘+1𝛼𝑘𝑛−𝑘 + 2�̂�(𝛼𝛽)𝑘+1𝛼𝑘𝑛−𝑘+2 − 2�̂�𝛼𝑘𝑛+1(𝛼 − 𝛽)  −

2�̂�(𝛼𝛽)𝑘+1𝛽𝑘𝑛−𝑘 + 2�̂�(𝛼𝛽)𝑘+1𝛽𝑘𝑛−𝑘+2 − 2�̂�𝛽𝑘𝑛+1(−𝛼 + 𝛽) +

𝑤(−𝛼 + 𝛽)(2𝛼𝑘+1 − 2𝛽𝑘+1 − 𝛼 + 𝛽 − (𝛼𝛽)𝑘(𝛼 − 𝛽))) 

 =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)(𝛼−𝛽)
(2(𝛼 − 𝛽) (2�̂�𝛼𝑘𝑛+𝑘+1 −

2�̂�𝛽𝑘𝑛+𝑘+1 +𝑤(−𝛼 + 𝛽)) − 4(�̂�𝛽𝑘𝑛+𝑘 + �̂�𝛼𝑘𝑛+𝑘) −

2(𝛼𝛽)𝑘+1(�̂�𝛼𝑘𝑛−𝑘 + �̂�𝛽𝑘𝑛−𝑘) + 2(𝛼𝛽)𝑘+1(�̂�𝛼𝑘𝑛−𝑘+2 +

�̂�𝛽𝑘𝑛−𝑘+2) − 2(𝛼 − 𝛽)(�̂�𝛼𝑘𝑛+1 − �̂�𝛽𝑘𝑛+1) + 𝑤(−𝛼 +

𝛽)(2𝛼𝑘+1 − 2𝛽𝑘+1 − 3𝛼 + 3𝛽 − (𝛼𝛽)𝑘(𝛼 − 𝛽))) 

 = 2
2�̂�𝛼𝑘𝑛+𝑘+1−2�̂�𝛽𝑘𝑛+𝑘+1+𝑤(−𝛼+𝛽)

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
−

1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
[
−4(�̂�𝛽𝑘𝑛+𝑘+�̂�𝛼𝑘𝑛+𝑘)

(𝛼−𝛽)
−

2(𝛼𝛽)𝑘+1
(�̂�𝛼𝑘𝑛−𝑘+�̂�𝛽𝑘𝑛−𝑘)

(𝛼−𝛽)
+ 2(𝛼𝛽)𝑘+1

�̂�𝛼𝑘𝑛−𝑘+2+�̂�𝛽𝑘𝑛−𝑘+2

𝛼−𝛽
] −

1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)(𝛼−𝛽)
[(𝛼 − 𝛽) (2�̂�𝛼𝑘𝑛+1 − 2�̂�𝛽𝑘𝑛+1 +

𝑤(−𝛼 + 𝛽)) + 𝑤(−𝛼 + 𝛽)(2𝛼𝑘+1 − 2𝛽𝑘+1 − 4𝛼 + 4𝛽 −

(𝛼𝛽)𝑘(𝛼 − 𝛽))] 

= 2ℒ𝑄𝑛+1
(𝑘)

−
1

5
ℒ𝑘
−1[−4𝐾𝑘𝑛+𝑘 − 2(−1)

𝑘+1(𝐾𝑘𝑛−𝑘 − 𝐾𝑘𝑛−𝑘+2)] −

ℒ𝑄𝑛
(𝑘)
−𝑤(1 − ℒ𝑘

−1(3 − (−1)𝑘)).  

So, we have 

 ℒ𝑄𝑛+1
(𝑘)

=
1

2
(ℒ𝑘ℒ𝑄𝑛

(𝑘) − (−1)𝑘ℒ𝑄𝑛−1
(𝑘) +

1

5
ℒ𝑘
−1[−4𝐾𝑘𝑛+𝑘 +

2(−1)𝑘+1𝐾𝑘𝑛−𝑘+1] + ℒ𝑄𝑛
(𝑘)
+ 𝑤(1 − ℒ𝑘

−1(3 − (−1)𝑘))). 

Theorem 5. The generating function of the higher-order Leonardo 

quaternions is given by 

𝐺(𝑥, 𝑘)

=
ℒ𝑘
−1(ℒ𝑄0 + (−ℒ𝑄0 − ℒ𝑄𝑘−2 + 𝑤(𝐿𝑘 − 2))𝑥) + (−ℒ𝑄𝑘−2 −𝑤((−1)

𝑘 + 1))𝑥2))

1 − (1 + 𝐿𝑘)𝑥 − (𝐿𝑘 + (−1)
𝑘)𝑥2 − (−1)𝑘𝑥3

. 
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Proof. Suppose that the generating function for the the higher-order 

Leonardo quaternions is  

 𝐺(𝑥, 𝑘) = ∑∞𝑛=0 ℒ𝑄𝑛
(𝑘)
𝑥𝑛 = ℒ𝑄0

(𝑘)
+ ℒ𝑄1

(𝑘)
𝑥 + ℒ𝑄2

(𝑘)
𝑥2 +

⋯+ ℒ𝑄𝑛
(𝑘)
𝑥𝑛 +⋯. 

By using Binet’s formula of ℒ𝑛
(𝑘)

 (5), we can rewrite the generating 

function as follows: 

 𝐺(𝑥, 𝑘) = ∑∞𝑛=0 ℒ𝑄𝑛
(𝑘)
𝑥𝑛 = ∑∞𝑛=0 (ℒ𝑛

(𝑘)
+ ℒ𝑛+1

(𝑘)
𝕚 + ℒ𝑛+2

(𝑘)
𝕛 +

ℒ𝑛+3
(𝑘)

𝕜)𝑥𝑛 

       = ∑∞𝑛=0 (
2𝛼𝑘𝑛+1−2𝛽𝑘𝑛+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
+
2𝛼𝑘𝑛+𝑘+1−2𝛽𝑘𝑛+𝑘+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕚 +

2𝛼𝑘𝑛+2𝑘+1−2𝛽𝑘𝑛+2𝑘+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕛 +

2𝛼𝑘𝑛+3𝑘+1−2𝛽𝑘𝑛+3𝑘+1−𝛼+𝛽

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
𝕜) 

      =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
(2∑∞𝑛=0 𝛼

𝑘𝑛+1(1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 +

𝛼3𝑘𝕜)𝑥𝑛 − 2∑∞𝑛=0 𝛽
𝑘𝑛+1(1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜)𝑥𝑛 + (−𝛼 +

𝛽)∑∞𝑛=0 (1 + 𝕚 + 𝕛 + 𝕜)𝑥
𝑛) 

      =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
(2𝛼�̂� ∑∞𝑛=0 (𝛼

𝑘𝑥)𝑛 −

2𝛽�̂� ∑∞𝑛=0 (𝛽
𝑘𝑥)𝑛 + (−𝛼 + 𝛽)𝑤 ∑∞𝑛=0 𝑥

𝑛) 

             =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
(
2𝛼�̂�

1−𝛼𝑘𝑥
−

2𝛽�̂�

1−𝛽𝑘𝑥
+ (−𝛼 + 𝛽)𝑤

1

1−𝑥
) 

      =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽

(2𝛼�̂�(1−𝛽𝑘𝑥)(1−𝑥)−2𝛽�̂�(1−𝛼𝑘𝑥)(1−𝑥)+(−𝛼+𝛽)𝑤(1−𝛼𝑘𝑥)(1−𝛽𝑘𝑥))

1−(1+𝛼𝑘+𝛽𝑘)𝑥−(𝛼𝑘+𝛽𝑘+(𝛼𝛽)𝑘)𝑥2−(𝛼𝛽)𝑘𝑥3
 

      =
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽

2𝛼�̂�−2𝛽�̂�+(−𝛼+𝛽)𝑤+(−2𝛼�̂�−2�̂�𝛼𝛽𝑘+2�̂�𝛽+2�̂�𝛽𝛼𝑘+𝑤(−𝛼+𝛽)(−𝛼𝑘−𝛽𝑘))𝑥

1−(1+𝛼𝑘+𝛽𝑘)𝑥−(𝛼𝑘+𝛽𝑘+(𝛼𝛽)𝑘)𝑥2−(𝛼𝛽)𝑘𝑥3
 

        +
1

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽

(2�̂�𝛼𝛽𝑘−2�̂�𝛽𝛼𝑘+(−𝛼+𝛽)𝑤𝛼𝑘𝛽𝑘)𝑥2

1−(1+𝛼𝑘+𝛽𝑘)𝑥−(𝛼𝑘+𝛽𝑘+(𝛼𝛽)𝑘)𝑥2−(𝛼𝛽)𝑘𝑥3
 

        =
ℒ𝑘
−1(ℒ𝑄0+(−ℒ𝑄0+(−1)

𝑘+1ℒ𝑄−𝑘+1+𝑤(𝐿𝑘+(−1)
𝑘+1−1))𝑥+((−1)𝑘ℒ𝑄−𝑘+1+𝑤((−1)

𝑘−(−1)𝑘))𝑥2))

1−(1+𝐿𝑘)𝑥−(𝐿𝑘+(−1)𝑘)𝑥2−(−1)𝑘𝑥3
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        =
ℒ𝑘
−1(ℒ𝑄0+(−ℒ𝑄0+(−1)

𝑘+1ℒ𝑄−𝑘+1+𝑤(𝐿𝑘+(−1)
𝑘+1−1))𝑥+(−1)𝑘ℒ𝑄−𝑘+1𝑥

2)

1−(1+𝐿𝑘)𝑥−(𝐿𝑘+(−1)
𝑘)𝑥2−(−1)𝑘𝑥3

. 

Theorem 6. The sum of the higher-order Leonardo quaternions is 

given by 

∑

∞

𝑛=0

ℒ𝑄𝑛
(𝑘)
=
𝑤ℒ𝑘

−1(𝐿𝑘−(−1)
𝑘 − 1)

−2(𝐿𝑘 + (−1)𝑘)
. 

Proof. If we take for 𝑥 =  1 in Theorem 5, the proof is completed. 

Lemma 7. Let �̂� = 1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜 , �̂� = 1 + 𝛽𝑘𝕚 +
𝛽2𝑘𝕛 + 𝛽3𝑘𝕜 and 𝑤 = 1 + 𝕚 + 𝕛 + 𝕜. Then, there are the following 

equations 

�̂��̂� = 𝑢 − 𝑙𝑣                                                                    (9) 

�̂��̂� = 𝑢 + 𝑙𝑣                                                                  (10) 

where 𝑢 = −2(−1)𝑘 + 𝐿𝑘𝕚 + 𝐿2𝑘𝕛 + 𝐿3𝑘𝕜 ,  𝑣 = 𝕚 − (−1)𝑘𝐿𝑘𝕛 +
(−1)𝑘𝕜 and 𝑙 = 𝛼𝑘 − 𝛽𝑘 . 

Proof. By using the equations (2) and (3), we obtain as follows:   

 �̂��̂� = (1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜)(1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜) 

 = 1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜+ 𝛼𝑘𝕚 − (𝛼𝛽)𝑘 + 𝛼𝑘𝛽2𝑘𝕚𝕛 +
𝛼𝑘𝛽3𝑘𝕚𝕜 + 𝛼2𝑘𝕛 + 𝛼2𝑘𝛽𝑘𝕛𝕚 − 𝛼2𝑘𝛽2𝑘 + 𝛼2𝑘𝛽3𝑘𝕛𝕜 + 𝛼3𝑘𝕜 +
𝛼3𝑘𝛽𝑘𝕜𝕚 + 𝛼3𝑘𝛽2𝑘𝕜𝕛 − 𝛼3𝑘𝛽3𝑘 

 = 1 − (−1)𝑘 − (−1)2𝑘 − (−1)3𝑘 + (𝛽𝑘 + 𝛼𝑘 + 𝛼2𝑘𝛽3𝑘 −
𝛼3𝑘𝛽2𝑘)𝕚 + (𝛼2𝑘 + 𝛽2𝑘 − 𝛼𝑘𝛽3𝑘 + 𝛼3𝑘𝛽𝑘)𝕛 + (𝛼3𝑘 + 𝛽3𝑘 +
𝛼𝑘𝛽2𝑘 − 𝛼2𝑘𝛽𝑘)𝕜 

 = −(−1)𝑘 − (−1)3𝑘 + (𝛽𝑘 + 𝛼𝑘 − 𝛼2𝑘𝛽2𝑘(𝛼𝑘 − 𝛽𝑘))𝕚 +
(𝛼2𝑘 + 𝛽2𝑘 + 𝛼𝑘𝛽𝑘(𝛼2𝑘−𝛽2𝑘))𝕛 + (𝛼3𝑘 + 𝛽3𝑘 − 𝛼𝑘𝛽𝑘(𝛼𝑘 −
𝛽𝑘))𝕜 
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= −2(−1)𝑘 + (𝛼𝑘 + 𝛽𝑘)𝕚 + (𝛼2𝑘 + 𝛽2𝑘)𝕛 + (𝛼3𝑘 + 𝛽3𝑘)𝕜
− (𝛼2𝑘𝛽2𝑘(𝛼𝑘 − 𝛽𝑘)𝕚 − 𝛼𝑘𝛽𝑘(𝛼2𝑘−𝛽2𝑘)𝕛
+ 𝛼𝑘𝛽𝑘(𝛼𝑘 − 𝛽𝑘)𝕜) 

   = −2(−1)𝑘 + 𝐿𝑘𝕚 + 𝐿2𝑘𝕛 + 𝐿3𝑘𝕜 − (𝛼
𝑘 − 𝛽𝑘)(𝕚 −

(−1)𝑘𝐿𝑘𝕛 + (−1)
𝑘𝕜)) 

   = 𝑢 − 𝑙𝑣 . 

 �̂��̂� = (1 + 𝛽𝑘𝕚 + 𝛽2𝑘𝕛 + 𝛽3𝑘𝕜)(1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜) 

 = 1 + 𝛼𝑘𝕚 + 𝛼2𝑘𝕛 + 𝛼3𝑘𝕜 + 𝛽𝑘𝕚 − (𝛼𝛽)𝑘 + 𝛼2𝑘𝛽𝑘𝕚𝕛 +
𝛼3𝑘𝛽𝑘𝕚𝕜 + 𝛽𝕛2𝑘 + 𝛼𝑘𝛽2𝑘𝕛𝕚 − 𝛼2𝑘𝛽2𝑘 + 𝛼3𝑘𝛽2𝑘𝕛𝕜 + 𝛽3𝑘𝕜 +
𝛼𝑘𝛽3𝑘𝕜𝕚 + 𝛼2𝑘𝛽3𝑘𝕜𝕛 − 𝛼3𝑘𝛽3𝑘 

= 1 − (−1)𝑘 − (−1)2𝑘 − (−1)3𝑘 + (𝛼𝑘 + 𝛽𝑘

+ (−1)2𝑘(𝛼𝑘 − 𝛽𝑘))𝕚 + (𝛼2𝑘 + 𝛽2𝑘

− (−1)𝑘(𝛼2𝑘 − 𝛽2𝑘)𝕛 + (𝛼3𝑘 + 𝛽3𝑘 + 𝛼𝑘𝛽𝑘(𝛼𝑘

− 𝛽𝑘))𝕜 

         = −2(−1)𝑘 + (𝛼𝑘 + 𝛽𝑘)𝕚 + (𝛼2𝑘 + 𝛽2𝑘)𝕛 + (𝛼3𝑘 +
𝛽3𝑘)𝕜 + ((−1)2𝑘(𝛼𝑘 − 𝛽𝑘)𝕚 − (−1)𝑘(𝛼2𝑘−𝛽2𝑘)𝕛 + (−1)𝑘(𝛼𝑘 −
𝛽𝑘)𝕜) 

          = −2(−1)𝑘 + 𝐿𝑘𝕚 + 𝐿2𝑘𝕛 + 𝐿3𝑘𝕜 + (𝛼
𝑘 − 𝛽𝑘)((𝕚 −

(−1)𝑘𝐿𝑘𝕛 + (−1)
𝑘𝕜)) 

   = 𝑢 + 𝑙𝑣. 

Theorem 8. For any 𝑛,𝑚, 𝑟 ∈ 𝑍, Vajda identity for the higher order 

Leonardo quaternions is given by 

 ℒ𝑄𝑛+𝑚
(𝑘) ℒ𝑄𝑛+𝑟

(𝑘) − ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑛+𝑚+𝑟

(𝑘) =

ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹𝑘𝑚(𝑢𝐹𝑘𝑟 + 𝑣𝐹𝑘𝑟𝐿𝑘𝑟) − 𝑤(ℒ𝑄𝑘𝑛+𝑘𝑟 −
ℒ𝑄𝑘𝑛+𝑘𝑚+𝑘𝑟) + (ℒ𝑄𝑘𝑛+𝑘𝑚 − ℒ𝑄𝑘𝑛)𝑤). 

Proof. Left side of the equation is rewritten with the help of the Binet 

formula of ℒ𝑄𝑛
(𝑘)

 as follows: 
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ℒ𝑄𝑛+𝑚
(𝑘) ℒ𝑄𝑛+𝑟

(𝑘) =
2�̂�𝛼𝑘𝑛+𝑘𝑚+1−2�̂�𝛽𝑘𝑛+𝑘𝑚+1+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
.
2�̂�𝛼𝑘𝑛+𝑘𝑟+1−2�̂�𝛽𝑘𝑛+𝑘𝑟+1+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
  

                        =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 (4�̂��̂�𝛼

2𝑘𝑛+𝑘𝑚+𝑘𝑟+2 +

4�̂��̂�𝛽2𝑘𝑛+𝑘𝑚+𝑘𝑟+2 − 4�̂��̂�𝛼𝑘𝑛+𝑘𝑚+1𝛽𝑘𝑛+𝑘𝑟+1 −

4�̂��̂�𝛽𝑘𝑛+𝑘𝑚+1𝛼𝑘𝑛+𝑘𝑟+1 + 2�̂�𝑤𝛼𝑘𝑛+𝑘𝑚+1(−𝛼 + 𝛽) −
2�̂�𝑤𝛽𝑘𝑛+𝑘𝑚+1(−𝛼 + 𝛽) + 𝑤(−𝛼 + 𝛽)(2�̂�𝛼𝑘𝑛+𝑘𝑟+1 −

2�̂�𝛽𝑘𝑛+𝑘𝑟+1) + 𝑤2(−𝛼 + 𝛽)2).    (11)          

 ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑛+𝑚+𝑟

(𝑘) =
2�̂�𝛼𝑘𝑛+1−2�̂�𝛽𝑘𝑛+1+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
.
2�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1−2�̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1+𝑤(−𝛼+𝛽)

2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽
 

                           =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 (4�̂��̂�𝛼

2𝑘𝑛+𝑘𝑚+𝑘𝑟+2 +

4�̂��̂�𝛽2𝑘𝑛+𝑘𝑚+𝑘𝑟+2 − 4�̂��̂�𝛼𝑘𝑛+1𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1 −

4�̂��̂�𝛽𝑘𝑛+1𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 + 2�̂�𝑤𝛼𝑘𝑛+1(−𝛼 + 𝛽) −

2�̂�𝑤𝛽𝑘𝑛+1(−𝛼 + 𝛽) + 𝑤(−𝛼 + 𝛽)(2�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 −

2�̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1) + 𝑤2(−𝛼 + 𝛽)2).                                     (12) 

Substracting the equation (11) from the equation (12), we obtain  

ℒ𝑄𝑛+𝑚
(𝑘) ℒ𝑄𝑛+𝑟

(𝑘) − ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑛+𝑚+𝑟

(𝑘) =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 −

4(𝛼𝛽)𝑘𝑛+1 (�̂��̂�𝛽𝑘𝑟(𝛼𝑘𝑚 − 𝛽𝑘𝑚) − �̂��̂�𝛼𝑘𝑟(𝛼𝑘𝑚 − 𝛽𝑘𝑚)) +

2𝑤(−𝛼 + 𝛽) ((�̂�𝛼𝑘𝑛+𝑘𝑟+1 − �̂�𝛽𝑘𝑛+𝑘𝑟+1) − (�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 −

�̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1)) + 2(−𝛼 + 𝛽)[(�̂�𝛼𝑘𝑛+𝑘𝑚+1 − 2�̂�𝛽𝑘𝑛+𝑘𝑚+1)𝑤 −

(2�̂�𝛼𝑘𝑛+1 − 2�̂�𝛽𝑘𝑛+1)𝑤]  

 =
1

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 (−4(−1)

𝑘𝑛+1(𝛼𝑘𝑚 − 𝛽𝑘𝑚)(�̂��̂�𝛽𝑘𝑟 −

�̂��̂�𝛼𝑘𝑟) + 2(−𝛼 + 𝛽)[𝑤 ((�̂�𝛼𝑘𝑛+𝑘𝑟+1 − �̂�𝛽𝑘𝑛+𝑘𝑟+1) −

(�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 − �̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1)) + (�̂�𝛼𝑘𝑛+𝑘𝑚+1 −

2�̂�𝛽𝑘𝑛+𝑘𝑚+1)𝑤 − (2�̂�𝛼𝑘𝑛+1 − 2�̂�𝛽𝑘𝑛+1)𝑤] ) 
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 =
(𝛼−𝛽)2

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 (−4(−1)

𝑘𝑛+1 (𝛼
𝑘𝑚−𝛽𝑘𝑚)

(𝛼−𝛽)2
(𝑢𝛽𝑘𝑟 −

𝑙𝑣𝛽𝑘𝑟 − 𝑢𝛼𝑘𝑟 − 𝑙𝑣𝛼𝑘𝑟) + 2(−𝛼 + 𝛽)
1

(𝛼−𝛽)2
[𝑤 ((�̂�𝛼𝑘𝑛+𝑘𝑟+1 −

�̂�𝛽𝑘𝑛+𝑘𝑟+1 − 𝛼 + 𝛽) − (�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 − �̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1 − 𝛼 +

𝛽)) + (�̂�𝛼𝑘𝑛+𝑘𝑚+1 − 2�̂�𝛽𝑘𝑛+𝑘𝑚+1 − 𝛼 + 𝛽)𝑤 − (2�̂�𝛼𝑘𝑛+1 −

2�̂�𝛽𝑘𝑛+1 − 𝛼 + 𝛽)𝑤] ) 

 =
(𝛼−𝛽)2

(2𝛼𝑘+1−2𝛽𝑘+1−𝛼+𝛽)
2 (−4(−1)

𝑘𝑛+1 (𝛼
𝑘𝑚−𝛽𝑘𝑚)

(𝛼−𝛽)2
(−𝑢(𝛼𝑘𝑟 −

𝛽𝑘𝑟) − 𝑙𝑣(𝛼𝑘𝑟 + 𝛽𝑘𝑟)) + 2(−𝛼 + 𝛽)
1

(𝛼−𝛽)2
[𝑤 ((�̂�𝛼𝑘𝑛+𝑘𝑟+1 −

�̂�𝛽𝑘𝑛+𝑘𝑟+1 +𝑤(−𝛼 + 𝛽)) − (�̂�𝛼𝑘𝑛+𝑘𝑚+𝑘𝑟+1 − �̂�𝛽𝑘𝑛+𝑘𝑚+𝑘𝑟+1 +

𝑤(−𝛼 + 𝛽))) + (�̂�𝛼𝑘𝑛+𝑘𝑚+1 − 2�̂�𝛽𝑘𝑛+𝑘𝑚+1 + 𝑤(−𝛼 + 𝛽))𝑤 −

(2�̂�𝛼𝑘𝑛+1 − 2�̂�𝛽𝑘𝑛+1 + 𝑤(−𝛼 + 𝛽))𝑤] ). 

By using the equations (1), (6), (9) and (10), we have 

 ℒ𝑄𝑛+𝑚
(𝑘) ℒ𝑄𝑛+𝑟

(𝑘) − ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑛+𝑚+𝑟

(𝑘) =
ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹𝑘𝑚(𝑢𝐹𝑘𝑟 + 𝑣𝐹𝑘𝑟𝐿𝑘𝑟) − 𝑤(ℒ𝑄𝑘𝑛+𝑘𝑟 −
ℒ𝑄𝑘𝑛+𝑘𝑚+𝑘𝑟) + (ℒ𝑄𝑘𝑛+𝑘𝑚 − ℒ𝑄𝑘𝑛)𝑤). 

Theorem 9. For any 𝑟 ≤ 𝑛 ∈ ℤ, Catalan's identity for the higher 

order Leonardo quaternions is 

ℒ𝑄𝑛−𝑟
(𝑘) ℒ𝑄𝑛+𝑟

(𝑘) − (ℒ𝑄𝑛
(𝑘))

2

= ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹−𝑘𝑟(𝑢𝐹𝑘𝑟 +

𝑣𝐹𝑘𝑟𝐿𝑘𝑟) − 𝑤(ℒ𝑄𝑘𝑛+𝑘𝑟 − ℒ𝑄𝑘𝑛) + (ℒ𝑄𝑘𝑛−𝑘𝑟 − ℒ𝑄𝑘𝑛)𝑤).                                      

Proof. The proof of Catalan's identity is done for the special case 

𝑚 = −𝑟 of Vajda identity.  

Theorem 10. Cassini’s identity for the higher order Leonardo 

quaternions is 

 ℒ𝑄𝑛−1
(𝑘) ℒ𝑄𝑛+1

(𝑘) − (ℒ𝑄𝑛
(𝑘))

2

= ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹−𝑘(𝑢𝐹𝑘 + 𝑣𝐹𝑘𝐿𝑘) −

𝑤(ℒ𝑄𝑘𝑛+𝑘 − ℒ𝑄𝑘𝑛) + (ℒ𝑄𝑘𝑛−𝑘 − ℒ𝑄𝑘𝑛)𝑤). 
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Proof. When it is taken as 𝑟 = 1 and 𝑚 = −1 in Vajda identity, we 

have  

 ℒ𝑄𝑛−1
(𝑘) ℒ𝑄𝑛+1

(𝑘) − (ℒ𝑄𝑛
(𝑘))

2

= ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹−𝑘(𝑢𝐹𝑘 + 𝑣𝐹𝑘𝐿𝑘) −

𝑤(ℒ𝑄𝑘𝑛+𝑘 − ℒ𝑄𝑘𝑛) + (ℒ𝑄𝑘𝑛−𝑘 − ℒ𝑄𝑘𝑛)𝑤). 

Theorem 11. D’Ocagne’s identity for the higher-order Leonardo 

quaternions is 

ℒ𝑄𝑘
(𝑘)ℒ𝑄𝑛+1

(𝑘) − ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑘+1

(𝑘) = ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹𝑘(𝑘−𝑛)(𝑢𝐹𝑘 +

𝑣𝐹𝑘𝐿𝑘) − 𝑤(ℒ𝑄𝑘(𝑛+1) − ℒ𝑄𝑘(𝑘+1)) + (ℒ𝑄𝑘2 − ℒ𝑄𝑘𝑛)𝑤).  

Proof.  If we take as 𝑚 +  𝑛 =  𝑘 and 𝑟 =  1 in Vajda identity, we 

obtain as follows: 

ℒ𝑄𝑘
(𝑘)ℒ𝑄𝑛+1

(𝑘) − ℒ𝑄𝑛
(𝑘)ℒ𝑄𝑘+1

(𝑘) = ℒ𝑘
−2(4(−1)𝑘𝑛+1𝐹𝑘(𝑘−𝑛)(𝑢𝐹𝑘 +

𝑣𝐹𝑘𝐿𝑘) − 𝑤(ℒ𝑄𝑘(𝑛+1) − ℒ𝑄𝑘(𝑘+1)) + (ℒ𝑄𝑘2 − ℒ𝑄𝑘𝑛)𝑤).  

Conclusion 

In this paper, we have defined the higher order Leonardo 

quaternions with the higher order Leonardo number components. 

We have introduced basic definitions and properties of these 

quaternions. Then, we have obtained fundamental properties such as 

Binet formula and generating function. Moreover, we have proved 

several identities such as Vajda identity, Catalan’s identity, Cassini’s 

identity and d’Ocagne identity for the higher order Leonardo 

quaternions by using Binet formula. 
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CHAPTER VII 

 

 

Uniqueness of Coupled Common Fixed Point under a 

Symmetric Contraction in Ordered GV-FMS 

 

 

 

Manish JAIN1 

 

1. Introduction 

In 1965, Zadeh [1] innovated the notion of fuzzy sets that lead 

the beginning of a new era providing quick headways into different 

branches of mathematics and its areas of applications. Particularly, 

metric space has been fuzzified in several inequivalent ways 

resulting into different definitions of fuzzy metric space [2 - 6]. 

The fuzzy version of the most celebrated “Banach contraction 

principle" in fuzzy metric spaces in the sense of Kramosi and 

Michalek (in short, KM) was presented by Grabiec [7]. The results 

proved by Fang [8] improved, generalized and unified the works of 

Edelstein [9], Istratescu [10], Sehgal and Bharucha-Reid [11]. 
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George and Veeramani [6, 12] modified the concept of fuzzy 

metric space due to Kramosil and Michalek [5] and thereby obtained 

Hausdorff topology in fuzzy metric space. After wards, various 

authors established several fixed point results in complete fuzzy 

metric spaces in the sense of George and Veeramani (GV) [6, 12], 

one can see ([13] – [14]). In the present work, we consider the 

definition of the fuzzy metric space introduced by George and 

Veeramani [6]. 

  The work of Bhaskar and Lakshmikantham [15] is worth 

mentioning, as they introduced the new notion of fixed points for the 

mappings having domain the product space X ×  X, which they 

called coupled fixed points, and thereby proved some coupled fixed 

point theorems for mappings satisfying the mixed monotone 

property in partially ordered metric spaces. As an application, they 

discussed the existence and uniqueness of a solution for a periodic 

boundary value problem. Lakshmikantham and Ćirić [16] extended 

the notion of the mixed monotone property to the mixed g-monotone 

property and generalized the results of Bhaskar and 

Lakshmikantham [15] by establishing the existence of coupled 

coincidence points, using a pair of commutative maps. This proved 

to be a foundation stone in the development of fixed point theory 

with applications to partially ordered sets. Since then much work has 

been done in this direction by different authors. For more details the 

reader may consult ([17-28]). Recently, the problems concerning the 

computation of coupled fixed points in metric space has been 

fuzzified, see [29–34]. 

In this paper, we establish coupled coincidence point and 

coupled fixed point results for a pair of mappings under the 

assumption of a new inequality in the setting of fuzzy metric space 

having Had �̌� i ć  type t-norm. As an application, a corresponding 

result in the metric space is also obtained. As a matter of fact, in our 

results we do not require the pair of the mappings to be commuting 

or compatible nor we have assumed the self mapping g: X → X to be 

monotonic, further, the completeness of the space X has also been 
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replaced by the completeness of the range subspaces of any one of 

the mappings F or g, hence our results generalize a number of 

existing results present in the literature in general. Also, various 

existing results on coupled coincidence points and coupled fixed 

points are extended, for details one can refer to [23, 38, 39]. 

2. Preliminaries 

Definition 2.1 [6]. “The 3-tuple (Ꭓ, Ɱ, ∗) is called a GV-FMS, if Ꭓ 

is an arbitrary set, ∗ is a continuous t-norm and Ɱ is a fuzzy set on 

Ꭓ2 × (0,∞) satisfying the following conditions: 

(FⱮ-1) Ɱ(ӽ, ỿ, 0) > 0, 

(FⱮ-2) Ɱ(ӽ, ỿ, ț) = 1  iff ӽ = ỿ, 

(FⱮ-3) Ɱ(ӽ, ỿ, ț) = Ɱ(ỿ, ӽ, ț), 

(FⱮ-4) Ɱ(ӽ, ỿ, ț) ∗ Ɱ(ỿ, z, s) ≤ Ɱ(ӽ, z, ț + s), 

(FⱮ-5) Ɱ(ӽ, ỿ,  . ) : (0, ∞) → [0, 1] is continuous for all ӽ, ỿ, z ∈ Ꭓ 

and s, ț > 0”. 

Remark 2.2. (i) In present work, we consider (Ꭓ, Ɱ, ∗) be a GV-

FMS with a Had�̌�i�́� type t-norm, Ɱ(ӽ, ỿ, ț) → 1 as ț → ∞ for all ӽ, ỿ 

∈ Ꭓ and ≼ be a partial order defined on Ꭓ, then, we write it as (Ꭓ, 

Ɱ, ∗, ≼) and in short, we call it as PO-GV-FMS. 

(ii) Unless otherwise stated we consider the mappings Ꝓ: Ꭓ × Ꭓ → Ꭓ, 

ꬶ: Ꭓ → Ꭓ. 

Definition 2.3[6]. Let (Ꭓ, Ɱ, ∗) be a GV-FMS, then 

(i) “a sequence {ӽ
𝑛

} in Ꭓ is said to be Convergent to a point ӽ ∈ Ꭓ, 

if  lim
n → ∞

𝑀(ӽ
𝑛

, ӽ, ț) = 1, for all ț > 0”; 

(ii) “a sequence {ӽ
𝑛

} in Ꭓ is called a Cauchy sequence if for each 0 

< 𝜀  < 1 and ț > 0, there exists a positive integer 𝑛0  such that 

M(ӽ
𝑛

, ӽ
𝑚

, ț) > 1 − 𝜀 for each n, m ≥ 𝑛0”; 

(iii) “a fuzzy metric space in which every Cauchy sequence is 

convergent is said to be complete”. 
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Definition 2.4 ([16]). “Let (Ꭓ, ≼) be a partially ordered set 

(POS) and Ꝓ, ꬶ be the mappings. We say Ꝓ has the mixed ꬶ-

monotone property (shortly, MꬶMP) if Ꝓ(ӽ, ỿ) is monotone ꬶ-non-

decreasing in its first argument and is monotone ꬶ-non-increasing in 

its second argument”. 

Taking ꬶ to be identity mapping in above definition, we can 

obtain the definition of mixed monotone property (shortly, MMP). 

Definition 2.5 ([16]). “An element (ӽ, ỿ) ∈ Ꭓ × Ꭓ, is called a 

coupled coincidence point (CCP) of the mappings Ꝓ and ꬶ if Ꝓ(ӽ, ỿ) 

= ꬶӽ and Ꝓ(ỿ, ӽ) = ꬶỿ”. 

Taking ꬶ to be the identity mapping in the above mapping, we 

can obtain the definition of coupled fixed point (CFP). 

Definition 2.6 ([16]). “An element (ӽ, ỿ) ∈ Ꭓ × Ꭓ, is called a 

coupled common fixed point (CCFP) of the mappings Ꝓ and ꬶ if ӽ = 

ꬶӽ = Ꝓ(ӽ, ỿ) and ỿ = ꬶỿ = Ꝓ(ỿ, ӽ)”. 

Lemma 2.7 [31]. “Let (Ꭓ, Ɱ, ∗) be a fuzzy metric space with 

a Had�̆�i�́� type t-norm ∗ such that Ɱ(ӽ, ỿ, ț) → 1 as ț → ∞ for all ӽ, ỿ 

∈ Ꭓ. If the sequences {ӽ𝑛} and {ỿ𝑛} in Ꭓ are such that, for all n ≥ 1, 

t > 0, M(ӽ𝑛, ӽ𝑛+1, ț) ∗ M(ỿ𝑛, ỿ𝑛+1, ț) ≥ M(ӽ𝑛−1, ӽ𝑛, ț 𝑘⁄ ) ∗ M(ỿ𝑛−1, 

ỿ𝑛, ț 𝑘⁄ ) where 0 < k < 1, then the sequences {ӽ𝑛} and {ỿ𝑛} are 

Cauchy sequences”. 

Definition 2.8. Let (Ꭓ, ḓ) be a metric space endowed with a 

partial ordering (≼) . We say that Ꭓ is regular if it satisfies the 

following property: 

(i) “if a non-decreasing sequence {ӽ
𝑛
} → ӽ, then ӽ

𝑛
≼ ӽ 

for all 𝑛 ≥ 0”;         (1.1) 

(ii) “if a non-decreasing sequence {ỿ𝑛} → ỿ, then ỿ ≼ ỿ𝑛 

for all 𝑛 ≥ 0”.         (1.2) 
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Remark 2.9. Note that if (Ꭓ, Ɱ, ∗) be a GV-FMS endowed with a 

partial ordering (≼). We say that Ꭓ is regular if it satisfies properties 

(1.1) and (1.2) with respect to the convergence in a GV-FMS. 

3. Main Results 

This section focuses on main coupled coincidence point 

results in fuzzy metric spaces. 

Theorem 3.1. Let (Ꭓ, Ɱ, ∗, ≼) be a PO-GV-FMS. Let (Ꝓ, ꬶ) be pair 

of mappings such that Ꝓ has MgMP and satisfies the following 

conditions: 

(Ꭓ - 1) Ꝓ(Ꭓ × Ꭓ) ⊆ ꬶ(Ꭓ); 

(Ꭓ - 2)  one of the range subspaces Ꝓ(Ꭓ × Ꭓ) or ꬶ(Ꭓ) is complete; 

(Ꭓ - 3)  there exists ҟ in (0, 1) such that 

            Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(μ, ⱴ), ҟț) ∗ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ), ҟț) 

 ≥ Ɱ(ꬶ(ӽ), ꬶ(μ), ț) ∗ Ɱ(ꬶ(ỿ), ꬶ(ⱴ), ț), 

for all ӽ, ỿ, μ, ⱴ in Ꭓ and ț > 0 with ꬶ(ӽ) ≼ ꬶ(μ) and ꬶ(ỿ) ≽ 

ꬶ(ⱴ) (or, ꬶ(ӽ) ≽ ꬶ(μ) and ꬶ(ỿ) ≼ ꬶ(ⱴ)); 

(Ꭓ - 4)  there exist two elements ӽ
0
,ỿ
0

 in Ꭓ such that the 

following satisfies: 

ꬶ (ӽ
0
) ≼  Ꝓ (ӽ

0
,ỿ
0
)  and ꬶ (ỿ

0
) ≽  Ꝓ (ỿ

0
, ӽ
0
)   (or, ꬶ (ӽ

0
) ≽ 

Ꝓ(ӽ
0
,ỿ
0
) and ꬶ(ỿ

0
) ≼ Ꝓ(ỿ

0
, ӽ
0
)); 

Further, suppose either 

(a)  both the mappings Ꝓ and ꬶ are continuous, or 

(b)  Ꭓ is regular; 

then, the (Ꝓ, ꬶ) has a CCP in Ꭓ. 

Proof. Without loss of generality, by (Ꭓ - 4) suppose that ӽ
0
,ỿ
0
 in 

Ꭓ be such that ꬶ(ӽ
0
) ≼ Ꝓ(ӽ

0
,ỿ
0
) and ꬶ(ỿ

0
) ≽ Ꝓ(ỿ

0
, ӽ
0
). Since Ꝓ(Ꭓ 

× Ꭓ) ⊆ ꬶ(Ꭓ) and Ꝓ has ⱮꬶⱮP so inductively, the sequences {ӽ
𝑛
} 

and {ỿ
𝑛
} can be constructed in Ꭓ such that 
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ꬶ(ӽ
𝑛+1

) = Ꝓ(ӽ
𝑛
,ỿ
𝑛
) and ꬶ(ỿ

𝑛+1
) = Ꝓ(ỿ

𝑛
, ӽ
𝑛
) for all 𝑛 ≥ 0.   (3.1) 

Further, by using (3.1) and since Ꝓ has ⱮꬶⱮP, inductively, it can be 

shown that 

ꬶ(ӽ
𝑛
) ≼ ꬶ(ӽ

𝑛+1
) and ꬶ(ỿ

𝑛
) ≽ ꬶ(ỿ

𝑛+1
)   for all 𝑛 ≥ 0.             (3.2) 

We suppose either ꬶ(ӽ
𝑛+1

) =  Ꝓ(ӽ
𝑛
,ỿ
𝑛
) ≠  ꬶ(ӽ

𝑛
)  or ꬶ(ỿ

𝑛+1
) = 

Ꝓ(ỿ
𝑛
, ӽ
𝑛
) ≠  ꬶ (ỿ

𝑛
) for all 𝑛 ≥ 0 , otherwise, the we can obtain 

directly the CCP of the pair (Ꝓ, ꬶ). 

Using (3.1) and (3.2), from (Ꭓ - 3), for ț > 0, n > 0, we have 

Ɱ(ꬶ(ӽ
𝑛

), ꬶ(ӽ
𝑛+1

), ҟț) ∗ Ɱ(ꬶ(ỿ
𝑛

), ꬶ(ỿ
𝑛+1

), ҟț) 

= Ɱ(Ꝓ(ӽ𝑛−1, ỿ𝑛−1), Ꝓ(ӽ𝑛,ỿ𝑛), ҟț) ∗ Ɱ(Ꝓ(ỿ
𝑛−1

, ӽ𝑛−1), Ꝓ(ỿ𝑛, ӽ𝑛), ҟț) 

≥ Ɱ(ꬶ(ӽ
𝑛−1

), ꬶ(ӽ
𝑛
), ț) ∗ Ɱ(ꬶ(ỿ

𝑛−1
), ꬶ(ỿ

𝑛
), ț) 

≥ Ɱ(ꬶ(ӽ
𝑛−1

), ꬶ(ӽ
𝑛
), ț) ∗ Ɱ(ꬶ(ỿ

𝑛−1
), ꬶ(ỿ

𝑛
), ț).                  (3.3) 

Using (3.3), by applying Lemma 7, the sequences {ꬶ(ӽ
𝑛

)} and 

{ꬶ(ỿ
𝑛

)} behaves like Cauchy sequences. Without loss of generality, 

suppose ꬶ(Ꭓ) is complete, so there exist ӽ, ỿ in Ꭓ such that for all ț 

> 0, we have that 

lim
n → ∞

Ɱ(ꬶ(ӽ), ꬶ(ӽ
𝑛

), ț) = lim
n → ∞

Ɱ(ꬶ(ӽ), Ꝓ(ӽ
𝑛
,ỿ
𝑛
), ț) = 1, 

lim
n → ∞

Ɱ(ꬶ(ỿ), ꬶ(ỿ
𝑛

), ț) = lim
n → ∞

Ɱ(ꬶ(ỿ), Ꝓ(ỿ
𝑛
, ӽ
𝑛
), ț) = 1.      (3.4) 

Suppose, condition (a) holds. 

Define a multifunction Ɠ: ꬶ(Ꭓ) → 2Ꭓ by Ɠ(ỿ) = {ӽ ∈ Ꭓ: ꬶ(ӽ) = ỿ}. 

Making use of Axiom of Choice, a function h: ꬶ(Ꭓ) → Ꭓ, so that h(ỿ) 

belongs to Ɠ(ỿ) for all ỿ in ꬶ(Ꭓ) can be constructed, yielding ꬶ(h(ỿ)) 

= ỿ for all ỿ in ꬶ(Ꭓ). Consider Ὲ = {h(ỿ): ỿ ∈ ꬶ(Ꭓ)} ⊆ Ꭓ. Clearly, 

the map ꬶ:Ὲ → Ꭓ is injective with ꬶ(Ὲ) = Ɠ(Ꭓ). 

Define another map Ԋ: ꬶ( Ὲ) × ꬶ( Ὲ) → Ꭓ by 

Ԋ(ꬶ(e), ꬶ(f)) = Ꝓ(e, f) for ꬶ(e), ꬶ(f) in ꬶ(Ὲ) (=ꬶ(Ꭓ)).      (3.5) 

Since ꬶ: Ὲ → Ꭓ is injective, the map Ԋ is well-defined. By (3.4) and 

(3.5), 
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lim
n→∞

 Ԋ(ꬶ(ӽ
n
), ꬶ(ỿ

n
)) = lim

n→∞
 Ꝓ(ӽ

n
,ỿ
n
) = lim

n→∞
 ꬶ(ӽ

𝑛
) = ꬶ(ӽ), 

lim
n→∞

Ԋ(ꬶ(ỿ
n
), ꬶ(ӽ

n
)) = lim

n→∞
 Ꝓ(ỿ

n
, ӽ

n
) = lim

n→∞
 ꬶ(ỿ

𝑛
) = ꬶ(ỿ).     (3.6) 

Using the continuity of Ꝓ and ꬶ, the continuity of the map Ԋ can be 

achieved, so by (3.6) we have 

Ԋ(ꬶ(ӽ), ꬶ(ỿ)) = ꬶ(ӽ) and Ԋ(ꬶ(ỿ), ꬶ(ӽ)) = ꬶ(ỿ).                  (3.7) 

On combining (3.5) with (3.7), we see that Ꝓ(ӽ, ỿ) = ꬶ(ӽ)   and   

Ꝓ(ỿ, ӽ) = ꬶ(ỿ). 

Next, we show the result for the condition (b). 

By (3.2) and (3.4), we have 

ꬶ(ӽ
n
) ≼ ꬶ(ӽ) and ꬶ(ỿ) ≼ ꬶ(ỿ

n
)   for n ≥ 0.        (3.8) 

Suppose that (ꬶ(ӽ
n
), ꬶ(ỿ

n
)) ≠ (ꬶ(ӽ), ꬶ(ỿ)) for n ≥ 0 otherwise 

(ӽ
n
,ỿ

n
) is a CCP of the pair (Ꝓ, ꬶ). Now, for t > 0, n ≥ 0, we obtain 

Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ≥ Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(ӽ
n
,ỿ

n
), ҟț) ∗ Ɱ(Ꝓ(ӽ

n
,ỿ

n
), ꬶ(ӽ), t 

– ҟț),            (3.9) 

Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ƴ), ț) ≥ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ỿ
n
,ӽ

n
), ҟț) ∗ Ɱ(Ꝓ(ỿ

n
, ӽ

n
), ꬶ(ỿ), t 

– ҟț).          (3.10) 

From (3.9) and (3.10), for all ț > 0, we obtain that 

Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ∗ Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) 

≥ [Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(ӽ
n
, ỿ

n
), ҟț) ∗ Ɱ(Ꝓ(ӽ

n
,ỿ

n
), ꬶ(ӽ), ț − ҟț)]  

∗ [Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ỿ
n
, ӽ

n
), ҟț) ∗ Ɱ(Ꝓ(ỿ

n
, ӽ

n
), ꬶ(ỿ), ț − ҟț)] 

= [Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(ӽ
n
,ỿ

n
), ҟț) ∗ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ỿ

n
, ӽ

n
), ҟț)] 

∗ [Ɱ(Ꝓ(ӽ
n
,ỿ

n
), ꬶ(ӽ), ț − ҟț) ∗ Ɱ(Ꝓ(ỿ

n
, ӽ

n
), ꬶ(ỿ), ț − ҟț)].   (3.11) 

Since ꬶ(ӽ
n
) ≼ ꬶ(ӽ)   and ꬶ(ỿ) ≼ ꬶ(ỿ

n
) for all n ≥ 0, using (Ꭓ - 3), 

we obtain that 

Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(ӽ
n
,ỿ

n
), ҟț) ∗ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ỿ

n
, ӽ

n
), ҟț)] 

≥ Ɱ(ꬶ(ӽ), ꬶ(ӽ
n
), ț) ∗ Ɱ(Ꞙ(ꬶ(ỿ), ꬶ(ỿ

n
), ț).                 (3.12) 

By (3.11) and (3.12), we obtain that 

Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ∗ Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) 
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≥ (Ɱ(ꬶ(ӽ), ꬶ(ӽ
n
), ț) ∗ Ɱ(Ꞙ(ꬶ(ỿ), ꬶ(ỿ

n
), ț)) 

∗ [Ɱ(Ꝓ(ӽ
n
,ỿ

n
), ꬶ(ӽ), ț − ҟț) ∗ Ɱ(Ꝓ(ỿ

n
, ӽ

n
), ꬶ(ỿ), ț − ҟț)].  (3.13) 

Letting limit as n → ∞ in (3.13), for ț > 0, we obtain that 

Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ∗ Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) 

≥ lim
n → ∞

 [Ɱ(ꬶ(ӽ), ꬶ(ӽ
n
), ț) ∗ Ɱ(Ꞙ(ꬶ(ỿ), ꬶ(ỿ

n
), ț)] 

∗ lim
n → ∞

 [Ɱ(Ꝓ(ӽ
n
,ỿ

n
), ꬶ(ӽ), ț − ҟț) ∗ Ɱ(Ꝓ(ỿ

n
, ӽ

n
), ꬶ(ỿ), ț − ҟț)]. 

By (3.4), 

 Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ∗ Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) 

  ≥ (1 ∗  1) ∗ (1 ∗  1) = 1. 

That is, Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) ∗ Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) ≥ 1. 

Therefore, Ɱ(Ꝓ(ӽ, ỿ), ꬶ(ӽ), ț) = 1 and Ɱ(Ꝓ(ỿ, ӽ), ꬶ(ỿ), ț) = 1, which 

implies ꬶ(ӽ) = Ꝓ(ӽ, ỿ) and ꬶ(ỿ) = Ꝓ(ỿ, ӽ). 

Hence, we obtained the result. 

Next, we give some examples in support of Theorem 3.1. 

Example 3.2. Let (Ꭓ, ≼) is the POS with Ꭓ = [0, 1) with ≤ being PO 

≼, the natural ordering of real numbers. Define Ɱ(ӽ, ỿ, ț) = 
ț

ț+ |ӽ − ỿ|
 

for ӽ, ỿ in Ꭓ and ț > 0 and ӽ ∗ ỿ = min{ӽ, ỿ} for all ӽ, ỿ in [0, 1]. 

Then (Ꭓ, Ɱ, ∗, ≼) be a PO-GV-FMS, which is not complete. Also, 

Ꭓ is regular. Define the mappings Ꝓ: Ꭓ × Ꭓ → Ꭓ and ꬶ: Ꭓ → Ꭓ 

respectively by 

Ꝓ(ӽ, ỿ)  = 0.4 for all (ӽ, ỿ) in Ꭓ × Ꭓ 

and  

  ꬶ(ӽ) = {
0.7  𝑖𝑓  0 ≤ ӽ < 0.5,

ӽ− 0.3  𝑖𝑓  0.5 ≤ ӽ < 1.
 

Since ꬶ(Ꝓ(ӽ, ỿ)) = ꬶ(0.4) = 0.7 ≠ 0.4 = Ꝓ(ꬶ(ӽ), ꬶ(ỿ)) for all ӽ, ỿ in 

Ꭓ, the mappings Ꝓ and ꬶ are neither commutative nor compatible. 

The following observations are immediate: 

(i)  Ꝓ(Ꭓ × Ꭓ) ⊆ ꬶ(Ꭓ); 
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(ii)  ꬶ(Ꭓ) is complete; 

(iii)             the map ꬶ is not continuous; 

(iv)  Ꝓ has ⱮꬶⱮP; 

(v)  the map ꬶ is not monotonic. 

Further, there exist ӽ
0
 = 0.3 and ỿ

0
 = 0.5 such that ꬶ(ӽ

0
) = ꬶ(0.3) = 

0.7 ≥ 0.4 = Ꝓ(0.3, 0.5) = Ꝓ(ӽ
0
, ỿ

0
) and ꬶ(ỿ

0
) = ꬶ(0.5) = 0.2 ≤ 0.4 

= Ꝓ(0.5, 0.3) = Ꝓ(ỿ
0
, ӽ

0
). 

Also, the inequality (Ꭓ - 3) holds, since for any ҟ in (0, 1), ț > 0 

Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(u, ⱴ), ҟț) ∗ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, u), ҟț) = 1 ∗ 1 

≥ Ɱ(ꬶ(ӽ), ꬶ(u), ț) ∗ Ɱ(ꬶ(ỿ), ꬶ(ⱴ), ț), 

for all ӽ, ỿ, u, ⱴ in Ꭓ, with ꬶ(ӽ) ≤ ꬶ(u) and ꬶ(ỿ) ≥ ꬶ(ⱴ). 

Hence, all hypotheses of Theorem 3.1 hold, thus, the pair (Ꝓ, ꬶ) has 

a CCP in Ꭓ × Ꭓ. Thus on applying Theorem 3.1, we get that the 

point (0.7, 0.7) is a CCP of the pair (Ꝓ, ꬶ). 

Corollary 3.3. Let (Ꭓ, Ɱ, ∗ , ≼ ) be a PO-GV-FMS which is 

complete. Let the mapping Ꝓ has ⱮⱮP and subjected to following: 

(Ꭓ - 5) there exists ҟ in (0, 1) such that 

Ɱ(Ꝓ(ӽ, ỿ), Ꝓ(μ, ⱴ), ҟț) ∗ Ɱ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ), ҟț) 

≥ Ɱ(ӽ, μ, ț) ∗ Ɱ(ỿ, ⱴ, ț), 

for all ӽ, ỿ, μ, ⱴ in Ꭓ, ț > 0 with ӽ ≼ μ and ỿ ≽ ⱴ (or, ӽ ≽ μ and ỿ ≼ 

ⱴ). 

Further, suppose either 

(a)  the mapping Ꝓ is continuous, or 

(b)  Ꭓ is regular. 

If there exist ӽ
0
, ỿ
0

 in Ꭓ such that ӽ
0
≼  Ꝓ (ӽ

0
, ỿ
0
)  and ỿ

0
≽ 

Ꝓ(ỿ
0
, ӽ
0
) (or, ӽ

0
≽ Ꝓ(ӽ

0
, ỿ
0
) and ỿ

0
≼ Ꝓ(ỿ

0
, ӽ
0
)), then the map Ꝓ 

has a CFP in Ꭓ. 

Proof. Proof follows by considering ꬶ = IꞳ (identity map on Ꭓ), in 

Theorem 3.1. 
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4. Existence and Uniqueness of CCFP 

Very recently, in order to obtain CCFP for nonlinear 

contractive mappings in cone metric spaces, Abbas et al. [41] gave 

the notion of w-compatible mappings. In this section, utilizing the 

notion of w-compatible mappings we extend Theorem 3.1 to ensure 

the existence and uniqueness of the CCFP in fuzzy metric space. 

Definition 4.1 ([41]). The mappings Ꝓ and ꬶ are called w-compatible 

if ꬶ(Ꝓ(ӽ, ỿ)) = Ꝓ(ꬶӽ, ꬶỿ) whenever ꬶ(ӽ) = Ꝓ(ӽ, ỿ) and ꬶ(ỿ) = Ꝓ(ỿ, ӽ) 

for ӽ, ỿ  X. 

Now, we give our result as follows: 

Theorem 4.2. If in Theorem 3.1 an additional hypothesis that: “for 

every (ӽ, ỿ), (ӽ′, ỿ′) in     Ꭓ × Ꭓ, there exists a (μ, ⱴ) in Ꭓ × Ꭓ such 

that (Ꝓ(μ, ⱴ), Ꝓ(ⱴ, u)) is comparable to (Ꝓ(ӽ, ỿ),                  Ꝓ(ỿ, ӽ)) 

and (Ꝓ(ӽ′, ỿ′), Ꝓ(ỿ′, ӽ′). Let the pair (Ꝓ, ꬶ) is w-compatible, then it 

has a unique CCFP.  

Proof. Using Theorem 3.1, set of coupled coincidences of pair (Ꝓ, 

ꬶ) is not empty. For obtaining the result, we first show: if (ӽ, ỿ) and 

(ӽ′, ỿ′) are CCP, then 

ꬶ(ӽ) = ꬶ(ӽ′)  and ꬶ(ỿ) = ꬶ(ỿ′).              (4.1) 

By assumption there is (μ, ⱴ) in Ꭓ × Ꭓ such that (Ꝓ(μ, ⱴ), Ꝓ(v, ⱴ)) is 

comparable with      (Ꝓ(ӽ, ỿ),  Ꝓ(ỿ, ӽ)) and (Ꝓ(ӽ′, ỿ′), Ꝓ(ỿ′, ӽ′)). Put 

μ
0
 = μ, ⱴ0 = ⱴ and choose μ

1
, ⱴ1 in Ꭓ so that ꬶ(μ

1
) = Ꝓ(μ

0
, ⱴ0), ꬶ(ⱴ1) 

= Ꝓ(ⱴ0, μ
0
). 

Then, like in Theorem 3.1, sequences {ꬶ(μ
𝑛

)} and {ꬶ(ⱴ𝑛)} can be 

defined such that ꬶ(μ
𝑛+1

) = Ꝓ(μ
𝑛

, ⱴ𝑛) and ꬶ(ⱴ𝑛+1) = Ꝓ(ⱴ𝑛, μn). 

Further, set ӽ
0
 = ӽ, ỿ0  = ỿ, ӽ

0
′  = ӽ′, ỿ0

′  = ỿ′, we construct sequences 

{ꬶ(ӽ
𝑛

)}, {ꬶ(ỿ𝑛)} and {ꬶ(ӽ
𝑛
′ )}, {ꬶ(ỿ𝑛

′ )} following the same track. 

Then, it can be easily obtained that 

ꬶ(ӽ
𝑛+1

) = Ꝓ(ӽ
𝑛

, ỿ𝑛), ꬶ(ỿ𝑛+1) = Ꝓ(ỿ𝑛, ӽ
𝑛

) 
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and 

ꬶ(ӽ
𝑛+1
′ ) = Ꝓ(ӽ

𝑛
′ , ỿ𝑛

′ ), ꬶ(ỿ𝑛+1
′ ) = Ꝓ(ỿ𝑛

′ , ӽ
𝑛
′ ), for n ≥ 0. 

Since (Ꝓ(μ, ⱴ), Ꝓ(ⱴ, μ)) = (ꬶ(μ
1
), ꬶ(ⱴ1)) and (ꬶ(ӽ), ꬶ(ỿ)) = (Ꝓ(ӽ, ỿ), 

Ꝓ(ỿ, ӽ)) = (ꬶ(ӽ
1
), ꬶ(ỿ1)) are comparable, then ꬶ(μ

1
) ≽ ꬶ(ӽ) and ꬶ(ⱴ1) 

≼ ꬶ(ỿ). Easily, it can be shown (ꬶ(μ
𝑛

), ꬶ(ⱴ𝑛)) and (ꬶ(ӽ), ꬶ(ỿ)) are 

comparable; that is, ꬶ(μ
𝑛

) ≽ ꬶ(ӽ) and ꬶ(ⱴ𝑛) ≼ ꬶ(ỿ) for all n > 0. 

Thus, from (Ꭓ - 3), for n > 0, 

Ɱ(ꬶ(μ𝑛+1), ꬶ(ӽ), ҟț) ∗ Ɱ(ꬶ(ⱴ𝑛+1), ꬶ(ỿ), ҟț) 

 = Ɱ(Ꝓ(μ
𝑛
, ⱴ𝑛), Ꝓ(ӽ, ỿ), ҟț) ∗ Ɱ(Ꝓ(ⱴ𝑛, μ𝑛), Ꝓ(ỿ, ӽ), ҟț) 

≥ Ɱ(ꬶ(μ
𝑛
), ꬶ(ӽ), ț) ∗ Ɱ(ꬶ(ⱴ𝑛), ꬶ(ỿ), ț), 

that is, for all n ∈ ℕ, we have that 

Ɱ(ꬶ(μ
𝑛+1

), ꬶ(ӽ), ҟț) ∗ Ɱ(ꬶ(ⱴ𝑛+1), ꬶ(ỿ), ҟț) 

≥ Ɱ(ꬶ(μ
𝑛

), ꬶ(ӽ), ț) ∗ Ɱ(ꬶ(ⱴ𝑛), ꬶ(ỿ), ț).                   (4.2) 

We claim that 

lim
n→∞

 ꬶ(μ
𝑛
) = ꬶ(ӽ)  and  lim

n→∞
 ꬶ(ⱴ𝑛) = ꬶ(ỿ).                  (4.3) 

If lim
n→∞

 ꬶ(μ
𝑛
) = μ and lim

n→∞
 ꬶ(ⱴ𝑛) = ⱴ for some μ, ⱴ in Ꭓ, it suffices to 

obtain that μ = ꬶ(ӽ) and v = ꬶ(ỿ). Letting limit as n → ∞ in (4.2) and 

using the properties of 𝛾, we obtain that 

Ɱ(μ, ꬶ(ӽ), ҟț) ∗ Ɱ(ⱴ, ꬶ(ỿ), ҟț) ≥ Ɱ(μ, ꬶ(ӽ), ț) ∗ Ɱ(ⱴ, ꬶ(ỿ), ț) 

 ≥ Ɱ(μ, ꬶ(ӽ), ț) ∗ Ɱ(ⱴ, ꬶ(ỿ), ț).                     (4.4) 

Thus, 

Ɱ(μ, ꬶ(ӽ), ț) ∗ Ɱ(ⱴ, ꬶ(ỿ), ț) ≥ Ɱ(μ, ꬶ(ӽ), ț ҟ
𝑛⁄ ) ∗ Ɱ(ⱴ, ꬶ(ỿ), ț ҟ

𝑛⁄ ), 

for all n ∈ ℕ, implying that Ɱ(μ, ꬶ(ӽ), ț) ∗ Ɱ(ⱴ, ꬶ(ỿ), ț) = 1 for ț > 

0. It follows Ɱ(μ, ꬶ(ӽ), ț) = Ɱ(ⱴ, ꬶ(ỿ), ț) = 1 for all ț > 0, therefore 

we can obtain that μ = ꬶ(ӽ) and ⱴ = ꬶ( ỿ), and hence (4.3) holds. 

Similarly, we obtain that 

lim
n→∞

 ꬶ(μ
n
) = ꬶ(ӽ′) and  lim

n→∞
 ꬶ(ⱴn) = ꬶ(ỿ).       (4.5) 
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Using uniqueness of limit, it is obtainable that ꬶ(ӽ) = ꬶ(ӽ′) and ꬶ(ỿ) 

= ꬶ(ỿ′). Thus, we have proved (4.1). 

As ꬶ(ӽ) = Ꝓ(ӽ, ỿ), ꬶ(ỿ) = Ꝓ(ỿ, ӽ) and the pair (Ꝓ, ꬶ) is w-compatible, 

it is obtainable that 

ꬶ(ꬶ(ӽ)) = ꬶ(Ꝓ(ӽ, ỿ)) = Ꝓ(ꬶ(ӽ), ꬶ(ỿ)) and ꬶ(ꬶ(ỿ)) = ꬶ(Ꝓ(ỿ, ӽ)) = 

Ꝓ(ꬶ(ỿ), ꬶ(ӽ)).                                (4.6) 

Denote ꬶ(ӽ) = ȥ, ꬶ(ỿ) = ⱳ. Then, using (4.6), 

ꬶ(z) = Ꝓ(ȥ, ⱳ) and  ꬶ(ȥ) = Ꝓ(ⱳ, ȥ).                   (4.7) 

Thus, (ȥ, ⱳ) is a CCP. 

Then, by (4.1) with ӽ′ = ȥ and ỿ′ = ⱳ, we get ꬶ(ȥ) = ꬶ(ӽ) and ꬶ(ⱳ) 

= ꬶ(ỿ); 

that is, ꬶ(ȥ) = ȥ, ꬶ(ⱳ) = ⱳ.          (4.8) 

Using (4.7) and (4.8), we obtain 

ȥ = ꬶ(ȥ) = Ꝓ(ȥ, ⱳ) and ⱳ = ꬶ(ⱳ) = Ꝓ(ⱳ, ȥ). 

Hence, (ȥ, ⱳ) is CCFP of Ꝓ and ꬶ. 

For uniqueness, let (ƿ, ɋ) be any CCFP. Then, by (4.1), we get 

ƿ = ꬶ(ƿ) = ꬶ(ȥ) = ȥ and ɋ = ꬶ(ɋ) = ꬶ(ⱳ) = ⱳ. 

5. Application in metric space 

In this section, as application of the results proved in the 

earlier sections of this paper, we obtain CCP results in the framework 

of ordered metric spaces. 

Theorem 5.1. Let (Ꭓ, ≼) be POS and ḓ a metric on Ꭓ so that (Ꭓ, ḓ) 

is a metric space, the pair (Ꝓ, ꬶ) of maps be such that Ꝓ has ⱮꬶⱮP 

and subjected to following: 

(Ꭓ - 6) there exists some ҟ in (0, 1) such that 

max{ḓ(Ꝓ(ӽ, ỿ), Ꝓ( μ, ⱴ)), ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ))} 

≤ 
ҟ

2
 [ḓ(ꬶ(ӽ), ꬶ(μ)) + ḓ(ꬶ(ỿ), ꬶ(ⱴ))], 

for all ӽ, ỿ, μ, ⱴ in Ꭓ for which ꬶ(ӽ) ≼ ꬶ(μ), ꬶ(ỿ) ≽ ꬶ(ⱴ) (or, ꬶ(ӽ) 

≽ ꬶ(μ) and ꬶ(ỿ) ≼ ꬶ(ⱴ)). 
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Suppose that (Ꭓ - 1), (Ꭓ - 2) and (Ꭓ - 4) holds. Also, assume that 

(a) both the maps Ꝓ and ꬶ are continuous, or 

(b) Ꭓ is regular, 

then the pair (Ꝓ, ꬶ) has a CCP. 

Proof. For all ӽ, ỿ in Ꭓ and ț > 0, define Ɱ(ӽ, ỿ, ț) = 
ț

ț+ḓ(ӽ,   ỿ)
 and p 

∗ q = min{p, q} with p, q in [0, 1]. Then, (Ꭓ, Ɱ, ∗) is FⱮS, ∗ as the 

Had�̌�ić type t-norm. Also, it can be easily seen that Ɱ(ӽ, ỿ, ț) = 
ț

ț+ḓ(ӽ,   ỿ)
 → 1 as ț → ∞, for all ӽ, ỿ in Ꭓ. We next verify that the 

inequality (Ꭓ - 6) implies (Ꭓ - 3). If otherwise, for 𝛾(t) = t, from (Ꭓ 

- 3), for some ț > 0 and ӽ, ỿ, μ, ⱴ in Ꭓ with ꞡ(ӽ) ≼ ꞡ(μ), ꞡ(ỿ) ≽ ꞡ(ⱴ), 

we have 

min{(ț/(ț + 
1

ҟ
 ḓ(Ꝓ(ӽ, ỿ), Ꝓ(μ, ⱴ)))), (ț/(ț + 

1

ҟ
 ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ))))} 

< min{(ț/(ț + ḓ(ꬶ(ӽ), ꬶ(μ)))), (ț/(ț + ḓ(ꬶ(ỿ), ꬶ(ⱴ))))}, 

then, we have either, 

(ț/(ț + 
1

ҟ
 ḓ(Ꝓ(ӽ, ỿ), Ꝓ(μ, ⱴ)))) < min{(ț/(ț + ḓ(ꬶ(ӽ), ꬶ(μ)))), (ț/(ț + 

ḓ(ꬶ(ỿ), ꬶ(ⱴ))))},      (5.1) 

or, 

 (ț/(ț + 
1

ҟ
 ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ)))) < min{(ț/(ț + ḓ(ꬶ(ӽ), ꬶ(μ)))), (ț/(ț + 

ḓ(ꬶ(ỿ), ꬶ(ⱴ))))}.      (5.2) 

From (5.1), it follows 

ț + 
1

ҟ
 ḓ(Ꝓ(ӽ, ỿ), Ꝓ( μ, ⱴ)) > ț + ḓ(ꬶ(ӽ), ꬶ(μ)).        (5.3) 

ț + 
1

ҟ
 ḓ(Ꝓ(ӽ, ỿ), Ꝓ( μ, ⱴ)) > ț + ḓ(ꬶ(ỿ), ꬶ(ⱴ)).        (5.4) 

Combining (5.3) and (5.4), we attain 

ḓ(Ꝓ(ӽ, ỿ), Ꝓ( μ, ⱴ)) > 
ҟ

2
 [ḓ(ꬶ(ӽ), ꬶ(μ)) + ḓ(ꬶ(ỿ), ꬶ(ⱴ))].      (5.5) 

Similarly, from (5.2), we obtain that 

ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ)) > 
ҟ

2
 [ḓ(ꬶ(ӽ), ꬶ(μ)) + ḓ(ꬶ(ỿ), ꬶ(ⱴ))].      (5.6) 

Using (5.5) and (5.6), we have that 
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max{ḓ(Ꝓ(ӽ, ỿ), Ꝓ( μ, ⱴ)), ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ))} > 
ҟ

2
 [[ḓ(ꬶ(ӽ), ꬶ(μ)) 

+ ḓ(ꬶ(ỿ), ꬶ(ⱴ))]], 

which is a contradiction to (Ꭓ - 6). Now, on applying Theorem 3.1, 

we get desired result. 

Theorem 5.2. Let (Ꭓ, ≼) be POS and ḓ a metric on Ꭓ so that (Ꭓ, ḓ) 

is a metric space. Let the pair (Ꞙ, ꬶ) of maps be such that Ꝓ has 

ⱮꬶⱮP and subjected to following: 

(Ꭓ - 7) there exists some ҟ in (0, 1) such that 

ḓ(Ꝓ(ӽ, ỿ), Ꝓ(μ, ⱴ)) + ḓ(Ꝓ(ỿ, ӽ), Ꝓ(ⱴ, μ)) ≤ ҟ [ḓ(ꬶ(ӽ), ꬶ(μ)) + ḓ(ꬶ(ỿ), 

ꬶ(ⱴ))], 

for all ӽ, ỿ, μ, ⱴ in Ꭓ for which ꬶ(ӽ) ≼ ꬶ(μ), ꬶ(ỿ) ≽ ꬶ(ⱴ) (or, ꬶ(ӽ) ≽ 

ꬶ(μ) and ꬶ(ỿ) ≼ ꬶ(ⱴ)).  

Suppose that (Ꭓ - 1), (Ꭓ - 2) and (Ꭓ - 4) holds. Also, assume that 

(a) both the maps Ꝓ and ꬶ are continuous, or 

(b) Ꭓ is regular, 

then, the pair (Ꝓ, ꬶ) has a CCP. 

Proof. Result follows immediately by considering the well known 

fact that,  
ӽ+ỿ

2
 ≤ max{ӽ, ỿ} in Theorem 5.1. 

Remark 5.3. (i) Theorem 5.1 provides an extension and 

generalization of a result of Berinde [Corollary 1, 38] for a pair of 

mappings. 

(ii) Theorem 5.2 improves the recent result of Jain et al. [Corollary 

2.3, 23]. By taking ꬶ = IꞳ (the identity mapping on Ꭓ) in Theorem 

5.2, we obtain the result of Berinde [Theorem 3, 39]. 

Remark 5.4. Unique coupled common fixed point for the pair (Ꝓ, ꬶ) 

under the hypotheses of Theorem 5.1 (or Theorem 5.2) can be 

obtained by assuming the additional assumptions as in Theorem 4.2.
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Mehmet KOCABIYIK1 

 

Introduction 

Measles is an infectious respiratory disease and the disease is 

caused by a virus from the Paramyxoviridae family (Yanagi et al., 

2006; Griffin, 2016). The incubation period for measles is usually 

10-14 days. People who are exposed and infected usually recover 

within three weeks without any complications. However, some 

people exposed to the disease die or suffer from serious illness and 

lifelong complications (Beay, 2004; Abad and Safdar, 2015). 

Annual reports on the estimated number of measles cases and 

deaths caused by measles worldwide are announced by the World 
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Health Organization (WHO), by evaluating the reports of member 

countries (WHO, 2019). 

Although measles is a vaccine-preventable disease, it still has 

alarming data globally. Measles has become a leading cause of 

illness and death among young children under five years of age 

worldwide, especially in underdeveloped countries. The spread of 

the virus occurs through the coughing or sneezing of an infected 

person. Therefore, the spread rate of the virus may be quite high. 

Clinical symptoms of the disease are high fever, runny nose, cough, 

conjunctivitis, rhinitis, small white spots, and rashes on the body of 

infected people. 

In recent years, research on measles has become one of the 

most important research areas in epidemiology due to the impact of 

mortality rates. Many scientists are focused on finding the best ways 

to prevent and control the disease in the first place. Researchers who 

generate ideas using different models have presented their 

mathematical, experimental and theoretical works to the scientific 

world. Some of these are stated below. 

Momoh et al. (2013) took into account the impact of 

asymptomatic individuals on measles dynamics in their study. 

Adewale et al. (2014) proved in their studies that the connection 
between people infected and uninfected with measles is effective in 

controlling the spread of the disease. In examining the dynamics on 

the effect of vaccination on measles, Smith et al. (2016) and Peter et 

al. (2018) conducted various research and studies. 

Garba et al. (2017) created a model system that examines the 

dynamics of disease treatment along with the vaccination period. 

The effect of treatment and quarantine stages on the spread of 

measles was examined by Beay (2018). Zhang et al. (2010) studied 

the status of the epidemic versus vaccination dynamics on random 

graphs and scale-free networks. Mossong and Muller (2003) 

conducted a study on modeling the reemergence of measles within 

vaccinated populations. 
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Beay (2004) proposed a SIQR epidemic model for the disease 

in his study. This study also performed numerical analysis of the 

model to investigate the impact of treatment and quarantine on 

measles dynamics. Data from the study showed that quarantine and 

treatment combined were more effective in controlling and 

preventing measles. In addition, it was observed with the help of this 

study that the spread of measles decreased due to the treatment and 

quarantine of infected individuals. 

The article that motivated our study is Peter et al. (2022). In 

this study, the literature focused on the deterministic modeling of 

measles disease in Nigeria. This study is based on an SVEIHR (S-

susceptible, V-vaccinated, E-exposed, I-infectious, H-hospitalized, 

and R-recovered) model. The SVEIHR model is based on the 

assumption of continuous vaccination.  

The findings of the current study may assist government and 

public health authorities in creating strategic vaccination plans to 

address vaccination gaps and thus prevent measles outbreaks. In our 

study, the numerical analysis of this type of model was examined to 

help prevent and control the disease. Thus, the effect of the system 

obtained in the stability analysis on people at different stages can be 

easily interpreted. 

In our study, the nonstandard finite difference method (NSFD) 

was used as the numerical method. The method developed by 

Mickens (1994) can easily eliminate instabilities, unlike other 

numerical methods. It is very important to eliminate instabilities by 

choosing the denominator function (Mickens, 2002). 

A lot of work has been done on the NSFD scheme. Ongun and 

Turhan (2012) made a numerical comparison for discrete HIV 

infection. For this comparison, they used the NSFD scheme in the 

disclosure part. Kocabıyık and Ongun (2022) also used this scheme 

in their distributed-order smoking model, adding one of the rare 

studies in this field to the literature. In their study, Kocabıyık and 

Ongun (2023) used the NSFD scheme in nonlinear equation systems 

and obtained productive results. For more detailed information, you 
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can refer to the sources (Kocabıyık et al., 2020; Çetinkaya et al., 

2021; Özdoğan and Ongun,2022). 

This paper is organized as follows. In the second section, the 

basic information necessary for the analysis is given. This 

information is about the Nonstandard finite difference scheme 

(NSFD) scheme and stability analysis. In the third section, the 

system of Measles disease is defined. Again in this section, the 

discretization of the system was found with the NSFD method. In 

the fourth section, the equilibrium points of the discretized system 

are examined. The stability analysis of the equilibrium points was 

obtained in this section by finding the eigenvalues. The fifth chapter 

includes the results and discussion section based on the 

discretization and stability analysis data. 

1.Basic Definitions About Nonstandard Finite Difference 

Scheme and Stability Analysis 

In this section, information about the non-standard finite 

difference method and stability analysis is given.  

The nonstandard finite difference method was defined by 

Mickens (1994). It was also applied to differential equations by 

Mickens. With this method, Mickens tried to solve the instabilities 

encountered during numerical analysis. The denominator function is 

used in the method to remove instabilities. With the different 

selection of the denominator function, instabilities are eliminated 

and analysis operations under different effects are made easier. 

 The method described by Mickens is as follows. 

Definition 2.1: (Mickens, 1994) The Nonstandard finite 
difference scheme is defined as follows: 

𝑑𝑘

𝑑𝑡
→
𝑘𝑛+1 − 𝑘𝑛

𝜙
, 𝑡 → 𝑡𝑛, 𝐹(𝑧) → 𝐹(𝑘𝑛),    𝑘(𝑡) → 𝑘(𝑡𝑛), 
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where 𝜙 is a denominator function. The denominator function 

depends on the variable p, which can be found by the equilibrium 

point, and the variable h, which is the step interval. 

Definition 2.2:  (Richter, 2002) Let the equilibrium point of 

the difference equation be Eq, in which case the following 

statements are true. 

i. If the absolute values of all roots of the characteristic 

polynomial are less than one, the equilibrium point is locally 

asymptotically stable. 

ii. If at least one of the absolute values of the roots of the 

characteristic polynomial is greater than one, the equilibrium point 

is unstable. 

2.Discretization of Measles Transmission Dynamics 

There are 6 different classifications in the population equation 

of the measles system. In this system, 𝑆(𝑡):  the susceptible 

population, 𝑉(𝑡):  vaccinated individuals, 𝐸(𝑡):  the population 

exposed to the disease, 𝐼(𝑡):  infected individuals, 𝐻(𝑡):  the 

population hospitalized due to the disease, and the last 𝑅(𝑡): refers 

to the population that survived the disease and recovered. The 

ordinary form of the SVEIHR model can be given as (Peter et al., 

2022): 

𝑑𝑆

𝑑𝑡
= 𝜑 − 𝑎𝑆(𝑡)𝐼(𝑡) + 𝑤 𝑉(𝑡) − (𝜏 + 𝜇)𝑆(𝑡), 

𝑑𝑉

𝑑𝑡
= 𝜏𝑆(𝑡) − (𝜇 + 𝑤)𝑉(𝑡),                                  

𝑑𝐸

𝑑𝑡
= 𝑎𝑆(𝑡)𝐼(𝑡) − (𝛽 + 𝜇)𝐸(𝑡),                          

𝑑𝐼

𝑑𝑡
= 𝛽𝐸(𝑡) − (𝜇 + 𝑝 + 𝛿)𝐼(𝑡),                           

𝑑𝐻

𝑑𝑡
= 𝑝 𝐼(𝑡) − (𝛾 + 𝛿 + 𝜇)𝐻(𝑡),                          
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𝑑𝑅

𝑑𝑡
= 𝛾𝐻(𝑡) − 𝜇𝑅(𝑡),                                             

where, the daily intake of the susceptible population is at the 

rate 𝜑. The transmission rate for the susceptible population is 𝛼, loss 

of immunity at the rate of vaccine decline is 𝑤 and individuals in the 

susceptible population are vaccinated at a rate 𝜏. Natural mortality 

occurs at a rate 𝜇 in all populations and the progression from the 

exposed class to the infected class is at the rate 𝛽. Infected people 

visit the hospital at a rate of 𝜌 due to complications from measles. 

The measles-related mortality rate is denoted by 𝛿 and the recovery 

rate from the effects of measles infection following treatment is 𝛾. 

The discretization processes of the SVEIHR model are as follows: 

 

𝑆𝑛+1 − 𝑆𝑛
𝜙1(ℎ)

= 𝜑 − 𝑎𝑆𝑛𝐼𝑛 +𝑤𝑉𝑛 − (𝜏 + 𝜇)𝑆𝑛+1,       

 

𝑉𝑛+1 − 𝑉𝑛
𝜙2(ℎ)

= 𝜏𝑆𝑛 − (𝜇 + 𝑤)𝑉𝑛+1,                                  

 

𝐸𝑛+1 − 𝐸𝑛
𝜙3(ℎ)

= 𝑎𝑆𝑛𝐼𝑛 − (𝛽 + 𝜇)𝐸𝑛+1,                             

 

𝐼𝑛+1 − 𝐼𝑛
𝜙4(ℎ)

= 𝛽𝐸𝑛 − (𝜇 + 𝑝 + 𝛿)𝐼𝑛+1,                            

 

𝐻𝑛+1 −𝐻𝑛
𝜙5(ℎ)

= 𝑝𝐼𝑛 − (𝛾 + 𝛿 + 𝜇)𝐻𝑛+1,                          

 

𝑅𝑛+1 − 𝑅𝑛
𝜙6(ℎ)

= 𝛾𝐻𝑛 − 𝜇𝑅𝑛+1,                                             

where 𝜙𝑖, 𝑖 = 1,2, … ,6 are denominator functions and are chosen as 

follows: 
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𝜙1(ℎ) =
𝑒(𝜏+𝜇)ℎ − 1

(𝜏 + 𝜇)
, 𝜙2(ℎ) =

𝑒(𝜇+𝑤)ℎ − 1

(𝜇 + 𝑤)
, 𝜙3(ℎ)

=
𝑒(𝛽+𝜇)ℎ − 1

(𝛽 + 𝜇)
, 

𝜙4(ℎ) =
𝑒(𝜇+𝑝+𝛿)ℎ − 1

(𝜇 + 𝑝 + 𝛿)
, 𝜙5(ℎ) =

𝑒(𝛾+𝛿+𝜇)ℎ − 1

(𝛾 + 𝛿 + 𝜇)
, 𝜙6(ℎ)

=
𝑒𝜇ℎ − 1

𝜇
. 

If the necessary arrangements are made in the following order: 

 

𝑆𝑛+1 − 𝑆𝑛 = 𝜙1(ℎ)(𝜑 − 𝑎𝑆𝑛𝐼𝑛 +𝑤𝑉𝑛 − (𝜏 + 𝜇)𝑆𝑛+1), 

𝑉𝑛+1 − 𝑉𝑛 = 𝜙2(ℎ)(𝜏𝑆𝑛 − (𝜇 + 𝑤)𝑉𝑛+1),                         

𝐸𝑛+1 − 𝐸𝑛 = 𝜙3(ℎ)(𝑎𝑆𝑛𝐼𝑛 − (𝛽 + 𝜇)𝐸𝑛+1),                    

𝐼𝑛+1 − 𝐼𝑛 = 𝜙4(ℎ)(𝛽𝐸𝑛 − (𝜇 + 𝑝 + 𝛿)𝐼𝑛+1),                   

𝐻𝑛+1 −𝐻𝑛 = 𝜙5(ℎ)(𝑝𝐼𝑛 − (𝛾 + 𝛿 + 𝜇)𝐻𝑛+1),                 

𝑅𝑛+1 − 𝑅𝑛 = 𝜙6(ℎ)(𝛾𝐻𝑛 − 𝜇𝑅𝑛+1),                                    

 

and then, 

 

𝑆𝑛+1(1 − 𝜙1(ℎ)(𝜏 + 𝜇)) = 𝑆𝑛 − 𝜙1(ℎ)(𝜑 − 𝑎𝑆𝑛𝐼𝑛 +𝑤𝑉𝑛), 

𝑉𝑛+1(1 − 𝜙2(ℎ)(𝜇 + 𝑤)) = 𝑉𝑛 − 𝜙2(ℎ)𝜏𝑆𝑛,                              

𝐸𝑛+1(1 − 𝜙3(ℎ)(𝛽 + 𝜇)) = 𝐸𝑛− 𝜙3(ℎ)𝑎𝑆𝑛𝐼𝑛,                          

𝐼𝑛+1(1 − 𝜙4(ℎ)(𝜇 + 𝑝 + 𝛿)) = 𝐼𝑛 − 𝜙4(ℎ)𝛽𝐸𝑛,                      

𝐻𝑛+1(1 − 𝜙5(ℎ)(𝛾 + 𝛿 + 𝜇)) = 𝐻𝑛 − 𝜙5(ℎ)𝑝𝐼𝑛,                    

𝑅𝑛+1(1 − 𝜙6(ℎ)𝜇) = 𝑅𝑛− 𝜙6(ℎ)𝛾𝐻𝑛,                                       

 

The final version of the discretized form of the SVEIHR system is 

as follows: 
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𝑆𝑛+1 =
𝑆𝑛 − 𝜙1(ℎ)(𝜑 − 𝑎𝑆𝑛𝐼𝑛 +𝑤𝑉𝑛)

1 − 𝜙1(ℎ)(𝜏 + 𝜇)
, 

𝑉𝑛+1 =
𝑉𝑛 − 𝜙2(ℎ)𝜏𝑆𝑛

1 − 𝜙2(ℎ)(𝜇 + 𝑤)
,                        

𝐸𝑛+1 =
𝐸𝑛− 𝜙3(ℎ)𝑎𝑆𝑛𝐼𝑛
1 − 𝜙3(ℎ)(𝛽 + 𝜇)

,                        

𝐼𝑛+1 =
𝐼𝑛 − 𝜙4(ℎ)𝛽𝐸𝑛

1 − 𝜙4(ℎ)(𝜇 + 𝑝 + 𝛿)
,                  

𝐻𝑛+1 =
𝐻𝑛 − 𝜙5(ℎ)𝑝𝐼𝑛

1 − 𝜙5(ℎ)(𝛾 + 𝛿 + 𝜇)
,                 

𝑅𝑛+1 =
𝑅𝑛− 𝜙6(ℎ)𝛾𝐻𝑛
1 − 𝜙6(ℎ)𝜇

.                             

 

If the following system of equations is solved to find the 

equilibrium point of the system: 

 

 

𝑆𝑛 =
𝑆𝑛 − 𝜙1(ℎ)(𝜑 − 𝑎𝑆𝑛𝐼𝑛 +𝑤𝑉𝑛)

1 − 𝜙1(ℎ)(𝜏 + 𝜇)
, 

 

𝑉𝑛 =
𝑉𝑛 − 𝜙2(ℎ)𝜏𝑆𝑛

1 − 𝜙2(ℎ)(𝜇 + 𝑤)
,                        

 

𝐸𝑛 =
𝐸𝑛− 𝜙3(ℎ)𝑎𝑆𝑛𝐼𝑛
1 − 𝜙3(ℎ)(𝛽 + 𝜇)

,                        

 

𝐼𝑛 =
𝐼𝑛 − 𝜙4(ℎ)𝛽𝐸𝑛

1 − 𝜙4(ℎ)(𝜇 + 𝑝 + 𝛿)
,                  
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𝐻𝑛 =
𝐻𝑛 − 𝜙5(ℎ)𝑝𝐼𝑛

1 − 𝜙5(ℎ)(𝛾 + 𝛿 + 𝜇)
,                 

 

𝑅𝑛 =
𝑅𝑛− 𝜙6(ℎ)𝛾𝐻𝑛
1 − 𝜙6(ℎ)𝜇

.                               

 

Thus, the equilibrium points are found as: 

 

 

𝐸𝑞1 = (
𝜑(𝜇 + 𝑤)

𝜇(𝜏 + 𝜇) + 𝑤(𝜇 + 2𝜏)
,

𝜑𝜏

𝜇(𝜏 + 𝜇) + 𝑤(𝜇 + 2𝜏)
, 0,0,0,0), 

 

 

𝐸𝑞2

= (
(𝛽 + 𝜇)((𝜇 + 𝑝 + 𝛿))

𝑎𝛽
,
𝜏(𝛽 + 𝜇)((𝜇 + 𝑝 + 𝛿))

𝑎𝛽(𝜇 + 𝑤)
, 𝑒𝑞3, 𝑒𝑞4, 𝑒𝑞5, 𝑒𝑞6). 

 

Here, quite complex operations are required for the last 4 

components of the 𝐸𝑞2  equilibrium point. For this reason, in the 

stability analysis part, the components of this balance point were 

obtained with numerical values. 

3.Stability Analysis of SVEIHR Epidemic Model 

In this section, stability analysis was performed to better 

understand the impact of measles. Two different equilibrium points 

were considered for the stability analysis. The parameter values to 

be used in this section are expressed in the table below (Peter et al., 

2022): 

𝜑: 680.27 𝜇: 0.000309 𝛿: 0.033720 𝜏: 0.0000001 𝑤: 0.003286 

𝑎: 10−9 𝛽: 0.5 𝑝: 0.036246 𝛾: 0.062366 ℎ: 0.01 
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By substituting the parameters at the expressed equilibrium 

points, these points are obtained as follows: 

𝐸𝑞1 = (2201459.799,61.23671208,0,0,0,0), 

𝐸𝑞2
= (70318429.96,1956.006397,−42071.45835, −299334.4601,−112554.3528,−22717038). 

For stability analysis of equilibrium points, Jacobian matrix is 

required. The Jacobian matrix of the resulting discretized system is 

shown as follows: 

 

By substituting the parameters and the obtained equilibrium 

point 𝐸𝑞1  into the Jacobian matrix, the characteristic equation is 

obtained as: 

𝑃(𝜆) = 𝜆6 − 5.993301 𝜆5 + 14.966515 𝜆4 − 19.933049 𝜆3 + 

14.933067 𝜆2 − 5.966543 𝜆 + 0.993310  

With the necessary calculations, the eigenvalues of this 

characteristic equation are in the following form: 

𝜆 1 = 0.994983, 𝜆 2 = 0.999036, 𝜆 3 = 0.999322, 

𝜆 4 = 0.999964, 𝜆 5 = 0.999996, 𝜆 6 = 0.999997. 

Thus, with the help of Definition 2.2, the absolute values of all 

eigenvalues are less than 1, that is, the 𝐸𝑞1 equilibrium point is 

locally asymptotically stable. 

If the same operations are repeated for 𝐸𝑞2, the characteristic 

equation is: 

 

 
 
 
 
 
 
 
 
 
 
 

1 + 𝜙1(ℎ)(𝑎𝐼𝑛)

1− 𝜙1(ℎ)(𝜏+ 𝜇)

−𝜙1(ℎ)(𝑤)

1− 𝜙1(ℎ)(𝜏 + 𝜇)
0

𝜙1(ℎ)(𝑎𝑆𝑛)

1− 𝜙1(ℎ)(𝜏 + 𝜇)
0 0

−𝜙2(ℎ)𝜏

1− 𝜙2(ℎ)(𝜇 +𝑤)

1

1− 𝜙2(ℎ)(𝜇 + 𝑤)
0 0 0 0

− 𝜙3(ℎ)𝑎𝐼𝑛
1− 𝜙3(ℎ)(𝛽+ 𝜇)

0
1

1− 𝜙3(ℎ)(𝛽 + 𝜇)

− 𝜙3(ℎ)𝑎𝑆𝑛
1− 𝜙3(ℎ)(𝛽 + 𝜇)

0 0

0 0
−𝜙4(ℎ)𝛽

1− 𝜙4(ℎ)(𝜇 + 𝑝 + 𝛿)

1

1−𝜙4(ℎ)(𝜇 + 𝑝 + 𝛿)
0 0

0 0 0
−𝜙5(ℎ)𝑝

1− 𝜙5(ℎ)(𝛾 + 𝛿 + 𝜇)

1

1−𝜙5(ℎ)(𝛾 + 𝛿 + 𝜇)
0

0 0 0 0
− 𝜙6(ℎ)𝛾

1 − 𝜙6(ℎ)𝜇

1

1− 𝜙6(ℎ)𝜇 
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𝑃(𝜆) = 𝜆6 − 5.993304 𝜆5 + 14.966527 𝜆4 − 19.933065 𝜆3 + 

14.933077 𝜆2 − 5.966544 𝜆 + 0.993310  

And the eigenvalues are, 

𝜆 1 = 0.994307, 𝜆 2 = 0.999036, 𝜆 3 = 0.999956, 

𝜆 4 = 0.999964, 𝜆 5 = 0.999999, 𝜆 6 = 1.000042. 

As can be seen, the 𝐸𝑞2equilibrium point is unstable because 

the 𝜆 6 eigenvalue does not meet the stability condition. 

4.Conclusion 

In this study, a stability analysis of an epidemic model of 

measles has been obtained. The effect of the vaccination component 

in the model has been examined. Discretization for numerical 

analysis has been obtained by the nonstandard finite difference 

method. Afterwards, equilibrium points were found again with this 

discretization method. Stability analysis of equilibrium points was 

examined with parameters. Thus, it has been seen that the method is 

suitable for this type of endemic equations. We have shown that 

analysis can be performed under different situations by selecting the 

appropriate denominator function. 
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Introduction 

Mathematical modeling is vital for resolving real-life problems 

in engineering, physics, statistics, economics, finance, chemistry, 

and other domains. Differential equations often serve as an important 

tool for modeling problems in these fields. Differential equations 

comprise quantities whose values fluctuate by one another and their 

respective rates of change. Modeling the relation between 

derivatives with differential equations, real-world issues become 

simpler to comprehend and easier to develop solutions for these 
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models. The majority of real-world issues involve nonlinear 

differential equations. It is challenging to solve some of these 

problems analytically. As a result, new approaches and studies are 

being developed to find better and newer numerical solutions to 

nonlinear equations. 

Thomas Malthus introduced one of the earliest mathematical 

models illustrating the dynamic change of populations. The 

Malthusian model posits that the rate of population growth in a 

country is directly proportional to its total population, denoted as 

𝒲(𝑡) at any given time 𝑡. According to this theory, the population 

growth at a specific moment in time is directly proportional to the 

projected population growth in the future. The mathematical 

representation of this model is described as a first-order ordinary 

linear differential equation, 

𝑑𝒲

𝑑𝑡
= 𝜅𝒲 

with initial condition  

𝒲(𝑡0) = 𝒲0 

where, 𝒲  represents the population at time 𝑡 , 𝒲0  indicates the 

starting population at time 𝑡0 and 𝜅 is a constant of proportionality. 

Based on this equation, it can be deduced that the population graph 

demonstrates exponential growth (Weigelhofer & Lindsay, 1999). 

The Malthus growth model demonstrates that a population can 

increase unlimitedly over time. Nevertheless, each population has a 

carrying capacity. When a population achieves its carrying capacity, 

competition for limited resources such as food, space, and other 

factors occurs, resulting in a divergence from exponential population 

growth. As a result, Pierre Verhulst's logistics model, which 

describes growth in a confined area, replaces the Malthusian model. 

The nonlinear biological models encompass a logistic growth model 

within a population, represented by the equation 
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𝑑𝒲(𝑡)

𝑑𝑡
= 𝑟𝒲(𝑡) (1 −

𝒲(𝑡)

𝜅
)                                          (1) 

where 𝑟 is growth rate and 𝜅 is the carrying capacity. The function 

𝒲(𝑡)  denotes the population of the species at time 𝑡 , while the 

expression 𝑟𝒲(𝑡) (1 −
𝒲(𝑡)

𝜅
) represents the per capita growth rate. 

Non-dimensionalization of equation (1) is accomplish by 

𝜑(𝜏) =
𝒲(𝑡)

𝜅
, 𝜏 = 𝑟𝑡 

which yields 

𝑑𝜑

𝑑𝜏
= 𝜑(1 − 𝜑).                                                                        (2) 

If the initial condition is given as 𝒲(0) = 𝒲0, then 𝜑(0) =
𝒲0

𝜅
 . Consequently, the analytical solution of equation (2) is achieved 

by 

𝜑(𝜏) =
1

1 + (
𝜅
𝒲0

− 1) 𝑒−𝜏
 .                                                 (3) 

The Lotka-Volterra equations were formulated to describe the 

dynamics of biological systems. This system of nonlinear 

differential equations focuses on predator-prey interactions. A 

predator-prey relationship refers to the dynamic between two species 

and the reciprocal influence they have on each other. At that point, 

one species is, in fact, consuming the other species for food. A 

predator is an organism that consumes or hunts other organisms for 

food, whereas a prey is an organism that another organism kills for 

food. Examples of predators with their prey are the fox and the 

rabbit, the lion, and the zebra. Predator-prey dynamics is a notion 

that applies not just to animals but also to plants. The relationship 

between the grasshopper and the leaf serves as an illustrative 

example in this context. The predator-prey models: Lotka–Volterra 

systems as an interacting species model denoted by 
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𝑑𝒲

𝑑𝑡
= 𝒲(𝑎 − 𝑏𝒱)                                                                (4) 

𝑑𝒱

𝑑𝑡
= 𝒱(𝑐𝒲 − 𝑑)                                                                     (5) 

where 𝑎, 𝑏, 𝑐 and 𝑑 are constants (Murray, 1993). Here 𝒲 =𝒲(𝑡) 
represents the prey population, and 𝒱 = 𝒱(𝑡)  represents the 

population of predators at the time 𝑡. The non-dimensionalization of 

the system (4)-(5) is given as 

𝜑(𝜏) =
𝑐𝒲(𝑡)

𝑑
, 𝜓(𝜏) =

𝑏𝒱(𝑡)

𝑎
, 𝜏 = 𝑎𝑡, 𝜇 = 𝑑/𝑎 

and it turns into 

𝑑𝜑

𝑑𝜏
= 𝜑(1 − 𝜓)                                                                        (6) 

𝑑𝜓

𝑑𝜏
= 𝜇[𝑔(𝜑,𝜓) − 𝜓].                                                            (7) 

Integral transforms are a valuable mathematical tool for 

solving a wide range of processes and phenomena in the fields of 

science, engineering, and real-life applications. These transforms 

allow us to express various complex problems in a mathematical 

framework, enabling their solution through rigorous mathematical 

techniques. In fields such as engineering, physics, and chemistry, 

integral transformations are employed to solve initial value 

problems, boundary value problems, differential equations, and 

integral equations. They convert the original domain of problems 

into another domain, simplifying intricate problems and enhancing 

comprehensibility. Subsequently, Inverse integral transforms are 

used to return the solution discovered by integral transforms to its 

original domain. Due to the diverse range of applications, many 

novel integral transforms have been defined. The most widely used 

and well-known integral transforms are the Laplace, Fourier, and 

Sumudu transforms. In this study, we deal with the Kashuri Fundo 

transform which is one of the integral transforms. The Kashuri 
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Fundo transform stands out as a convenient, efficient, easy-to-use, 

and dependable method, enabling the attainment of solutions without 

the need for intricate calculations. As a result of this, one may find 

several studies on the Kashuri Fundo transform in the literature. 

Kashuri and Fundo (2013) introduced the Kashuri Fundo transform 

to the literature. Numerous researchers, Kashuri and Fundo among 

them, developed various applications (Kashuri et al. 2013a, 2013b, 

2015; Fundo et al. 2016) of this transform in subsequent stages. Shah 

et al. (2015a, 2015b) examine to solve a nonlinear differential-

difference equation arising in nanotechnology and the concentration 

of the longitudinal dispersion phenomenon arising in fluid flow 

through porous media by mixture Kashuri Fundo transform and 

homotopy perturbation method. Güngör (2021) investigated the 

solution of Volterra integral equations via Kashuri Fundo transform. 

Johansyah et al. (2022)  solved the economic growth acceleration 

model with memory effects for the quadratic cost function using 

Kashuri Fundo transformation method. Moreover, Peker et al. (2022, 

2022a, 2022b, 2022c, 2023) utilized this transform to solve Abel’s 

integral equation, steady heat transfer problem, decay problem, 

cardiovascular models. 

Now, we will present the Kashuri Fundo integral transform, 

along with its necessary properties. 

Definition 1. (Kashuri & Fundo, 2013) Let 𝐹 be a function set 

defined by 

𝐹 = {𝑓(𝑡) ∣ ∃𝑀, 𝑘1, 𝑘2 > 0, such that |𝑓(𝑡)| ≤ 𝑀𝑒

|𝑡|

𝑘𝑖
2
, if 𝑡

∈ (−1)𝑖 × [0,∞)}. 

where 𝑀 must be finite number 𝑘1, 𝑘2 may be finite or infinite. A 

new integral transform denoted by the operator 𝒦(. ) is defined by 

𝒦[𝑓(𝑡)](𝑣) = 𝐴(𝑣) =
1

𝑣
∫  
∞

0

𝑒
−𝑡
𝑣2𝑓(𝑡)𝑑𝑡,  𝑡 ≥ 0, −𝑘1 < 𝑣 < 𝑘2. 
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Theorem 1 (Linearity property ). (Kashuri & Fundo, 2013) 

Let 𝑓(𝑡)  and 𝑔(𝑡)  be functions whose Kashuri Fundo integral 

transforms exit and 𝜆1 , 𝜆2 be constants, then 

𝒦[(𝜆1𝑓 + 𝜆2 𝑔)(𝑡)] = 𝜆1 𝒦[(𝑓)(𝑡)] + 𝜆2 𝒦[(𝑔)(𝑡)]. 

Theorem 2 (Kashuri Fundo transform of the derivative). 

(Kashuri & Fundo, 2013) Let suppose  𝐴(𝑣)  be Kashuri Fundo 

transform of  𝑓(𝑡). Then  

𝒦[𝑓(𝑛)(𝑡)] =
𝐴(𝑣)

𝑣2𝑛
−∑  

𝑛−1

𝑘=0

𝑓(𝑘)(0)

𝑣2(𝑛−𝑘)−1
. 

Table 1. Kashuri Fundo Transform of Some Standart Functions 

𝑓(t) 𝒦[𝑓(t)] = 𝐴(𝑣) 

1 𝑣 

𝑡 𝑣3 

𝑡𝑛 𝑛! 𝑣2𝑛+1 

𝑒𝜆𝑡 
𝑣

1 − 𝜆𝑣2
 

sin (𝜆𝑡) 
𝜆𝑣3

1 + 𝜆2𝑣4
 

cos (𝜆𝑡) 
𝑣

1 + 𝜆2𝑣4
 

sinh (𝜆𝑡) 
𝜆𝑣3

1 − 𝜆2𝑣4
 

cosh (𝜆𝑡) 
𝜆

1 − 𝜆2𝑣4
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Main Results 

This section presents the Kashuri Fundo transform as a 

technique that facilitates the solution of nonlinear differential 

equations through biological models, specifically those comprising 

a logistic growth model to study population dynamics and the prey-

predator model to analyze ecological interactions. 

 

Kashuri-Fundo Method for Logistic Growth Model 

In this subsection, take into the model equation in the form 

of 

𝑑𝜑

𝑑𝑡
= 𝜑 − 𝑔(𝜑), 𝜑(0) = 𝜑0                                          (8) 

where 𝑔 represents a nonlinear function of 𝜑. Therefore, we assume 

that the solution of 𝜑 satisfying (8) has a representation of the form 

of an infinite series 

𝜑 = 𝜑(𝑡) = ∑  

∞

𝑘=0

𝑐𝑘𝑡
𝑘                                                               (9) 

In addition, it fulfills the necessary criteria for the Kashuri Fundo 

transform to be in existence. Applying the Kashuri Fundo transform 

to the either side of the differential equation in (8), then we find 

𝒦[𝜑(𝑡)]

𝑣2
−
𝜑0
𝑣
= 𝒦[𝜑(𝑡)] − 𝒦[𝑔(𝜑(𝑡))]. 

Hence, we obtain  

𝒦[𝜑(𝑡)] = 𝜑0
𝑣

1 − 𝑣2
−

𝑣2

1 − 𝑣2
𝒦[𝑔(𝜑(𝑡))].                 (10) 

Thus, assuming the existence of the inverse Kashuri Fundo 

transform 𝒦−1  exists and applying it to expression (10), the 

equation can be written as: 
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𝜑(𝑡) = 𝜑0𝑒
𝑡 −𝒦−1 [

𝑣2

1 − 𝑣2
𝒦[𝑔(𝜑(𝑡))]]. 

Example 1. Let us consider the logistic growth model equation 

(8) where 𝒲0 = 2 and 𝜅 = 1. Hence 𝜑0 can be expressed as 𝜑0 =
𝒲0

𝜅
= 2. We set 𝑔(𝜑) = 𝜑2 as in (2) so that one finds 

𝑔(𝜑) = (∑  

∞

𝑘=0

𝑐𝑘𝑡
𝑘)

2

 

            = (𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 +⋯⋅ +𝑐𝑘𝑡

𝑘 +⋯)2 

                         = 𝑐0
2 + 2𝑐0𝑐1𝑡 + (2𝑐0𝑐2 + 𝑐1

2)𝑡2 

                        +(2𝑐0𝑐3 + 2𝑐1𝑐2)𝑡
3 + (2𝑐0𝑐4 + 2𝑐1𝑐3 + 𝑐2

2)𝑡4 +⋯. 

Implementing Kashuri Fundo transform to each side of the equation 

𝒦[𝑔(𝜑)] = 𝐺(𝑣) 

                  = 𝑐0
2𝑣 + 2𝑐0𝑐1𝑣

3 + (2𝑐0𝑐2 + 𝑐1
2)2! 𝑣5 

                 +(2𝑐0𝑐3 + 2𝑐1𝑐2)3! 𝑣
7 

                              +(2𝑐0𝑐4 + 2𝑐1𝑐3 + 𝑐2
2)4! 𝑣9 +⋯. 

Using (10) one gets 

Φ(𝑣) = 2 
𝑣

1 − 𝑣2
− [

𝑣3𝑐0
2

1 − 𝑣2
+
2𝑐0𝑐1𝑣

5

1 − 𝑣2
 

          +2!
(2𝑐0𝑐2 + 𝑐1

2)𝑣7

1 − 𝑣2
+ 3!

(2𝑐0𝑐3 + 2𝑐1𝑐2)𝑣
9

1 − 𝑣2
 

         +4!
(2𝑐0𝑐4 + 2𝑐1𝑐3 + 𝑐2

2)𝑣11

1 − 𝑣2
+⋯] 

          = 2 
𝑣

1 − 𝑣2
− [𝑐0

2 (
𝑣

1 − 𝑣2
− 𝑣) + 2𝑐0𝑐1 (

𝑣

1 − 𝑣2
− 𝑣 − 𝑣3) 

          +2! (2𝑐0𝑐2 + 𝑐1
2) (

𝑣

1 − 𝑣2
− 𝑣 − 𝑣3 − 𝑣5) 
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        +3! (2𝑐0𝑐3 + 2𝑐1𝑐2) (
𝑣

1 − 𝑣2
− 𝑣 − 𝑣3 − 𝑣5 − 𝑣7) 

        +4! (2𝑐0𝑐4 + 2𝑐1𝑐3 + 𝑐2
2) (

𝑣

1 − 𝑣2
− 𝑣 − 𝑣3 − 𝑣5 − 𝑣7 − 𝑣9) 

         +⋯ ] 

Upon application of the inverse Kashuri Fundo transform to this 

equation yields 

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2+𝑐3𝑡

3 +⋯ = 2(1 + 𝑡 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+ ⋯) 

−(𝑐0
2 + 2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1

2 + 12𝑐0𝑐3 + 12𝑐1𝑐2 + 48𝑐0𝑐4 + 48𝑐1𝑐3 

+24𝑐2
2 +⋯)(1 + 𝑡 +

𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+ ⋯) 

 +(𝑐0
2 + 2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1

2 + 12𝑐0𝑐3 + 12𝑐1𝑐2 + 48𝑐0𝑐4 

+48𝑐1𝑐3 + 24𝑐2
2 +⋯) 

 +(2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1
2 + 12𝑐0𝑐3 + 12𝑐1𝑐2 + 48𝑐0𝑐4 

+48𝑐1𝑐3 + 24𝑐2
2 +⋯)𝑡 

+(2𝑐0𝑐1 + 𝑐1
2 + 6𝑐0𝑐3 + 6𝑐1𝑐2 + 24𝑐0𝑐4 + 24𝑐1𝑐3 + 12𝑐2

2 +⋯)𝑡2 

+(2𝑐0𝑐3 + 2𝑐1𝑐2 + 8𝑐0𝑐4 + 8𝑐1𝑐3 + 4𝑐2
2 +⋯)𝑡3 

+(2𝑐0𝑐4 + 2𝑐1𝑐3 + 𝑐2
2 +⋯)𝑡4 +⋯ 

= 2(1 + 𝑡 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+ ⋯) − 𝑐0

2𝑡 − (
𝑐0
2

2
+ 𝑐0𝑐1) 𝑡

2 
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−(
𝑐0
2

6
+
𝑐0𝑐1
3

+
2𝑐0𝑐2
3

+
𝑐1
2

3
) 𝑡3 

−(
𝑐0
2

24
+
𝑐0𝑐1
12

+
𝑐0𝑐2
6

+
𝑐1
2

12
+
𝑐0𝑐3
2

+
𝑐1𝑐2
2
) 𝑡4 −⋯ 

= 2 + (2 − 𝑐0
2)𝑡 + (1 −

𝑐0
2

2
− 𝑐0𝑐1) 𝑡

2 

+(
1

3
−
𝑐0
2

6
−
𝑐0𝑐1
3
−
2𝑐0𝑐2
3

−
𝑐1
2

3
) 𝑡3 

+(
1

12
−
𝑐0
2

24
−
𝑐0𝑐1
12

−
𝑐0𝑐2
6

−
𝑐1
2

12
−
𝑐0𝑐3
2

−
𝑐1𝑐2
2
) 𝑡4 +⋯ 

from (9). When the coefficients of power 𝑡 are equated, the result is 

 𝑐0 = 2, 

𝑐1 = 2 − 𝑐0
2 ⟹ 𝑐1 = −2, 

 𝑐2 = 1 −
𝑐0
2

2
− 𝑐0𝑐1 ⟹ 𝑐2 = 3, 

 𝑐3 =
1

3
−
𝑐0
2

6
−
𝑐0𝑐1
3

−
2𝑐0𝑐2
3

−
𝑐1
2

3
⟹ 𝑐3 = −

13

3
, 

𝑐4 =
1

12
−
𝑐0
2

24
−
𝑐0𝑐1
12

−
𝑐0𝑐2
6

−
𝑐1
2

12
−
𝑐0𝑐3
2

−
𝑐1𝑐2
2

⟹ 𝑐4 =
25

4
, 

      ⋮ 
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and so on. Consequently, the solution 𝜑(𝑡) is obtained from (9) as 

follows 

𝜑(𝑡) = 2 − 2𝑡 + 3𝑡2 −
13

3
𝑡3 +

25

4
𝑡4 +⋯ 

that is the closed form exact solution obtained in (3). This solution 

is identical to the one discovered in (Pamuk & Soylu, 2020; Pamuk, 

2005). 

𝑠𝑛(𝑡) represents the 𝑛th partial sums of the series (9) which 

is equivalent to  

𝑠𝑛(𝑡) = ∑  

𝑛

𝑘=0

𝑐𝑘𝑡
𝑘.                                                                  (11) 

Based on the observation of Figure 1, it is evident that a highly 

accurate approximation of the exact solution for the logistic growth 

model within the time interval [0,0.25]  has been achieved by 

computing only five terms of the series in (9). This indicates that the 

rate of convergence of the Kashuri Fundo transform method is highly 

rapid.  Furthermore, it is possible to minimize the overall errors and 

obtain a reasonably accurate estimation of the exact solution for 𝑡 ≥

0.25 by incorporating new terms into the series. 
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Figure 1. The resolution of the logistic growth model in 

population dynamics 

 

Applying of Kashuri Fundo Transform for Prey-Predator 

Model 

Let us consider the system of non-linear differential 

equations that determines the predator-prey model. 

− 𝜑exact(𝑡) 

 ⋯ 𝑠4(𝑡) 
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𝑑𝜑

𝑑𝑡
= 𝜑 − 𝑔(𝜑,𝜓)                                                                  (12) 

             
𝑑𝜓

𝑑𝑡
= 𝛼[ℎ(𝜑,𝜓) − 𝜓]                                                            (13) 

with initial conditions 

             𝜑(0) = 𝜑0, 𝜓(0) = 𝜓0                                                         (14) 

where 𝑔 and ℎ are nonlinear functions of 𝜑 and 𝜓 and also 𝛼 be a 

positive constant. It is assumed that the solutions 𝜑 and 𝜓  of the 

system (12)-(13) possess infinite series expansions in the following 

form: 

             𝜑(𝑡) = ∑  

∞

𝑘=0

𝑐𝑘𝑡
𝑘 , 𝜓(𝑡) = ∑  

∞

𝑘=0

𝑑𝑘𝑡
𝑘 .                           (15) 

Furthermore, the necessary criteria for the existence of their Kashuri 

Fundo transforms are satisfied by them. By utilizing the Kashuri 

Fundo for the equations (12)-(13) and utilizing (14), we obtain 

             
Φ(𝑣)

𝑣2
−
𝜑0
𝑣
= Φ(𝑣) − 𝐺(𝑣)                                                  (16) 

             
Ψ(𝑣)

𝑣2
−
𝜓0
𝑣
= 𝛼[𝐻(𝑣) − Ψ(𝑣)]                                           (17) 

where 𝒦[𝜑(𝑡)] = Φ(𝑣), 𝒦[𝑔(𝜑(𝑡), 𝜓(𝑡))] = 𝐺(𝑣), 𝒦[𝜓(𝑡)] =

Ψ(𝑣), 𝒦[ℎ(𝜑(𝑡), 𝜓(𝑡))] = 𝐻(𝑣)  are the Kashuri Fundo 

transforms of the functions 𝜑(𝑡), 𝑔(𝜑(𝑡), 𝜓(𝑡)), 𝜓(𝑡)  and 
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ℎ(𝜑(𝑡), 𝜓(𝑡)), respectively. By solving the equations (16)-(17) for 

Φ(𝑣) and Ψ(𝑣), one gets 

             Φ(𝑣) =
𝑣

1 − 𝑣2
𝜑0 −

𝑣2

1 − 𝑣2
 𝐺(𝑣) 

             Ψ(𝑣) =
𝑣

1 + 𝛼𝑣2
𝜓0 +  𝛼

𝑣2

1 + 𝛼𝑣2
𝐻(𝑣) 

Assuming inverse Kashuri Fundo transforms exist and utilizing them 

to the system, we obtain  

             𝜑(𝑡) = 𝜑0𝑒
𝑡 −𝒦−1 [

𝑣2

1 − 𝑣2
 𝐺(𝑣)] 

             𝜓(𝑡) = 𝜓0𝑒
−𝛼𝑡 + 𝛼𝒦−1 [

𝑣2

1 + 𝛼𝑣2
𝐻(𝑣)] 

desired solutions to the initial value problem (12)-(14). 

Example 2. Consider the differential equation system that 

governs the predator and prey model 

             
𝑑𝜑

𝑑𝑡
= 𝜑 − 𝜑𝜓                                                                          (18) 

             
𝑑𝜓

𝑑𝑡
= 𝜑𝜓 − 𝜓                                                                          (19) 

with initial data 𝜑(0) = 1.3, 𝜓(0) = 0.6 . 

Suppose that 𝜑(𝑡) = ∑  ∞
𝑘=0 𝑐𝑘𝑡

𝑘, 𝜓(𝑡) = ∑  ∞
𝑘=0 𝑑𝑘𝑡

𝑘  be solutions 

of the system of (18)-(19). Hence, we find 
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             𝑔(𝜑, 𝜓) = ℎ(𝜑,𝜓) = 𝜑𝜓 = (∑  

∞

𝑘=0

𝑐𝑘𝑡
𝑘   ) (∑  

∞

𝑘=0

𝑑𝑘𝑡
𝑘) 

                     = 𝑐0𝑑0 + (𝑐0𝑑1 + 𝑐1𝑑0)𝑡 + (𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0)𝑡
2 

                       +(𝑐0𝑑3 + 𝑐1𝑑2 + 𝑐2𝑑1 + 𝑐3𝑑0)𝑡
3 +⋯. 

The corresponding Kashuri Fundo transforms of these functions 

become 

             𝐺(𝑣) = 𝐻(𝑣) = 𝒦[𝜑𝜓] 

                       = 𝑐0𝑑0𝒦[1] + (𝑐0𝑑1 + 𝑐1𝑑0)𝒦[𝑡] 

                       +(𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0)𝒦[𝑡
2] 

                       +(𝑐0𝑑3 + 𝑐1𝑑2 + 𝑐2𝑑1 + 𝑐3𝑑0)𝒦[𝑡
3] + ⋯ 

                       = 𝑐0𝑑0𝑣 + (𝑐0𝑑1 + 𝑐1𝑑0)𝑣
3 

                       +(𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0)2! 𝑣
5 

                       +(𝑐0𝑑3 + 𝑐1𝑑2 + 𝑐2𝑑1 + 𝑐3𝑑0)3! 𝑣
7 +⋯. 

Therefore, we find 

             Φ(𝑣) =
𝑣

1 − 𝑣2
1.3 −

𝑣3

1 − 𝑣2
𝑐0𝑑0 − 

𝑣5

1 − 𝑣2
(𝑐0𝑑1 + 𝑐1𝑑0) 

                       −
2! 𝑣7

1 − 𝑣2
(𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0) 

                       −
3! 𝑣9

1 − 𝑣2
(𝑐0𝑑3 + 𝑐1𝑑2 + 𝑐2𝑑1 + 𝑐3𝑑0) − ⋯ 

                       =
𝑣

1 − 𝑣2
1.3 − (

𝑣

1 − 𝑣2
− 𝑣) 𝑐0𝑑0 
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                       − (
𝑣

1 − 𝑣2
− 𝑣 − 𝑣3) (𝑐0𝑑1 + 𝑐1𝑑0) 

                       −2! (
𝑣

1 − 𝑣2
− 𝑣 − 𝑣3 − 𝑣5) (𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0)  

                       −3! (
𝑣

1 − 𝑣2
− 𝑣 − 𝑣3 − 𝑣5 − 𝑣7) (𝑐0𝑑3 + 𝑐1𝑑2

+ 𝑐2𝑑1 + 𝑐3𝑑0) − ⋯ 

and 

             Ψ(𝑣) =
𝑣

1 + 𝑣2
0.6 + 

𝑣3

1 + 𝑣2
𝑐0𝑑0 + 

𝑣5

1 + 𝑣2
(𝑐0𝑑1 + 𝑐1𝑑0) 

                       +
2! 𝑣7

1 + 𝑣2
(𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0) 

                       +
3! 𝑣9

1 + 𝑣2
(𝑐0𝑑3 + 𝑐1𝑑2 + 𝑐2𝑑1 + 𝑐3𝑑0) + ⋯ 

                       =
𝑣

1 + 𝑣2
0.6 + (𝑣 −

𝑣

1 + 𝑣2
) 𝑐0𝑑0 

                       +  (𝑣3 − 𝑣 +
𝑣

1 + 𝑣2
) (𝑐0𝑑1 + 𝑐1𝑑0) 

                       +2! (𝑣5 − 𝑣3 + 𝑣 −
𝑣

1 + 𝑣2
) (𝑐0𝑑2 + 𝑐1𝑑1 + 𝑐2𝑑0) 

                       +3! (𝑣7 − 𝑣5 + 𝑣3 − 𝑣 +
𝑣

1 − 𝑣2
) (𝑐0𝑑3 + 𝑐1𝑑2

+ 𝑐2𝑑1 + 𝑐3𝑑0) + ⋯ 

by using (15). By utilizing inverse Kashuri Fundo transform to 

these equations, we obtain 
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             𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 + 𝑐3𝑡

3 +⋯ 

             = 1.3 (1 + 𝑡 +
𝑡2

2!
+
𝑡3

3!
+ ⋯) − 𝑐0𝑑0𝑡 

             −(𝑐0𝑑0 + 𝑐0𝑑1 + 𝑐1𝑑0)
𝑡2

2!
 

             −(𝑐0𝑑0 + 𝑐0𝑑1 + 𝑐1𝑑0 + 2𝑐0𝑑2 + 2𝑐1𝑑1 + 2𝑐2𝑑0)
𝑡3

3!
− ⋯ 

             = 1.3 + (1.3 − 𝑐0𝑑0)𝑡 + (1.3 − 𝑐0𝑑0 − 𝑐0𝑑1 − 𝑐1𝑑0)
𝑡2

2!
 

             +(1.3 − 𝑐0𝑑0 − 𝑐0𝑑1 − 𝑐1𝑑0 − 2𝑐0𝑑2 − 2𝑐1𝑑1 − 2𝑐2𝑑0)
𝑡3

3!
 

             +⋯ 

and  

             𝑑0 + 𝑑1𝑡 + 𝑑2𝑡
2 + 𝑑3𝑡

3 +⋯ 

             = 0.6 (1 − 𝑡 +
𝑡2

2!
−
𝑡3

3!
+ ⋯) 

             −𝑐0𝑑0𝑡 − (𝑐0𝑑0 + 𝑐0𝑑1 + 𝑐1𝑑0)
𝑡2

2!
 

             −(𝑐0𝑑0 + 𝑐0𝑑1 + 𝑐1𝑑0 + 2𝑐0𝑑2 + 2𝑐1𝑑1 + 2𝑐2𝑑0)
𝑡3

3!
− ⋯ 

             = 0.6 + (𝑐0𝑑0 − 0.6)𝑡 + (0.6 − 𝑐0𝑑0 + 𝑐0𝑑1 + 𝑐1𝑑0)
𝑡2

2!
 

              +(−0.6 + 𝑐0𝑑0 − 𝑐0𝑑1 − 𝑐1𝑑0 + 2𝑐0𝑑2 + 2𝑐1𝑑1

+ 2𝑐2𝑑0)
𝑡3

3!
+ ⋯  . 
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If the coefficients are equalized to powers of 𝑡, it is found as 

𝑐0 = 1.3 

 

𝑑0 = 0.6 

𝑐1 = 1.3 − 𝑐0𝑑0 

𝑐1 = 0.52 

 

𝑑1 = 𝑐0𝑑0 − 0.6 

𝑑1 = 0.18 

𝑐2 =
1

2!
(1.3 − 𝑐0𝑑0 − 𝑐0𝑑1 

          −𝑐1𝑑0) 

 

𝑐2 = −0.013 

 

𝑑2 =
1

2!
(0.6 + 𝑐0𝑑1 + 𝑐1𝑑0 

        −𝑐0𝑑0) 

 

𝑑2 = 0.183 

𝑐3 =
1

3!
(1.3 − 𝑐0𝑑0 − 𝑐0𝑑1 

           −𝑐1𝑑0 − 2𝑐0𝑑2 

          −2𝑐1𝑑 − 2𝑐2𝑑0) 

 

𝑐4 = −0.1122 

𝑑3 =
1

3!
(−0.6 + 𝑐0𝑑0 − 𝑐0𝑑1 

       −𝑐1𝑑0 + 2𝑐0𝑑2 

        +2𝑐1𝑑1 + 2𝑐2𝑑0) 

 

𝑑4 = 0.0469 

⋮ ⋮ 

The subsequent terms of the series can be obtained using this 

method. By substituting these terms into equation (15), we obtain the 

approximate solutions for the problem described by equations (18)-

(19): 

𝜑(𝑡) = 1.3 + 0.52𝑡 − 0.013𝑡2 − 0.1122𝑡3 −⋯ 

 𝜓(𝑡) = 0.6 + 0.18𝑡 + 0.183𝑡2 + 0.0469𝑡3 +⋯  . 

The current results we have obtained align with the findings from the 

referenced research. in reference (Pamuk & Soylu, 2020; Pamuk, 

2005).  
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The approximate solutions to systems (18)-(19) derived 

through the Kashuri Fundo transform using solely four elements of 

the series (15) are illustrated in Figure 2. The numerical solutions for 

this system appear in Figure 3. The system's numerical solutions are 

computed with Ode45, an integrated ordinary differential equation 

solver in MATLAB. 

Within the time period of [0,1.5], the two solutions for φ 

(prey population) and ψ (predator population) are found to be quite 

near when comparing the two figures. Adding more terms to the 

series provides an even closer approximation to the numerical 

answer for 𝑡 ≥ 1.5, as previously mentioned in the context of the 

logistic growth model. 
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Figure 2. Approximate solutions to the system (18)-(19) by 

Kashuri Fundo transform method 

 

−  𝜓(𝑡) 

⋯  𝜑(𝑡) 
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Figure 3. Numerical solutions to the system (18)-(19) 

 

 

 

 

 

 

 

−  𝜓(𝑡) 

⋯  𝜑(𝑡) 
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CHAPTER X 

 

 

The Representations and Fnite Sums of the Mersenne-

Padovan Numbers 

 

 

 

 

Özgür ERDAĞ 

 

Introduction and Preliminaries 

A Mersenne number, by nM , is a number of the form 

2 1n

nM = − . The Mersenne sequence  
0n n

M


 can also be defined 

recursively by 

2 1= 3 2n n nM M M+ + −  

with initial values 0 0M =  and 1 1M = . It is worth noting that 

Mersenne numbers belong to the same family as Fermat numbers, 

and thus, they share the same properties. (Catarino, Campos & 

Vasco, 2016) 
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The Padovan sequence is the sequence of the integer ( ) P n  

defined by the following recurrence relation: 

( ) ( ) ( )= 2 3P n P n P n− + −  

for 3n  and with initial values ( ) ( ) ( )0 1 2 1P P P= = = . 

It is easy to see that the characteristic polynomials of the 

Mersenne sequence and Padovan sequence are ( ) 2

1 = 3 2k x x x− +  

and ( ) 3

2 = 1k x x x− − , respectively. 

Erdağ (Erdağ, 2023) defined the Mersenne-Padovan sequence 

 Pa

nM  by the following homogeneous linear recurrence relation: 

5 4 3 2 13 2 2Pa Pa Pa Pa Pa Pa

n n n n n nM M M M M M+ + + + += − − − +                              (1) 

for 0n   and with initial conditions 0 3= = = 0Pa PaM M  and 

4 = 1PaM . 

Also in (Erdağ, 2023), by the recurrence relation (1), they have 

5 4

4 3

3 2

2 1

1

3 1 2 1 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Pa Pa

n n

Pa Pa

n n

Pa Pa

n n

Pa Pa

n n

Pa Pa

n n

M M

M M

M M

M M

M M

+ +

+ +

+ +

+ +

+

  − − −   
    
    
    =
    
    
        

 

for the Mersenne-Padovan sequence  Pa

nM  and they gave the 

generating matrix of the Mersenne-Padovan sequence  Pa

nM  as 

follows: 
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.

3 1 2 1 2

1 0 0 0 0

= 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

M

PaE

− − − 
 
 
 
 
 
  

 

The matrix 
5 5

=M

Pa ijE e


  
 is said to be the Mersenne-Padovan 

matrix. Then, they obtained that 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

4 4 4 3

3 3 3 2

2 2 2 1

1 1 1

4 1 2 1 2

3 1 1 1 1 2

= 2 1 2 1 2

1 1 3 1 1 2

1

Pa Pa Pa Pa

n n n n

Pa Pa Pa Pa

n n n n
n

M Pa Pa Pa Pa

Pa n n n n

Pa Pa Pa Pa

n n n n

Pa Pa

n n

M M P n M P n P n M

M M P n M P n P n M

E M M P n M P n P n M

M M P n M P n P n M

M M P n M

+ + + +

+ + + +

+ + + +

+ + +

− + + − − + − + +

− + + − − + − − + +

− + + − − + − − +

− + + − − + − − − +

− + − − ( ) ( ) 1 .
4 2 1 2Pa Pa

n nP n P n M −

 
 
 
 
 
 
 + − − − + 

 

for 4n  , which can be readily established by mathematical 

induction. 

Many authors have recently investigated the characteristics of 

number theory, such as those derived from homogeneous linear 

recurrence relations, which are pertinent to this study; see for 

example: (Bradie, 2010; Horadam, 1994; Shannon, Horadam & 

Anderson, 2006; Taşçı & Firengiz, 2010; Tuğlu, Koçer & Stakhov, 

2011). In (Aküzüm, 2020; Aküzüm & Deveci, 2021; Deveci & 

Aküzüm, 2022; Deveci, Aküzüm & Rashedi, 2022; Kilic, 2008; 

Kılıc, 2009; Kilic & Tasci, 2006; Stakhov, 1999), the authors defined 

some linear recurrence sequences and provided their various 

properties using matrix methods. Obtaining new sequences by 

multiplication of the characteristic polynomials of the sequences was 

first started in (Deveci, 2021). Later the concept was expanded by 

authors to different linear recurrence sequences; see for example: 

(Deveci & Shannon, 2021; Erdağ & Deveci, 2020a, 2020b; Erdağ & 

Deveci, 2021; Erdağ & Deveci, 2022; Erdağ, Deveci & Shannon, 

2020; Shannon, Erdağ & Deveci, 2021). In this study, we consider 
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the Mersenne-Padovan sequence. Also, we derive the permanental 

and the determinantal representations of the Mersenne-Padovan 

numbers by using certain matrices that are obtained from the 

generating matrix of the Mersenne-Padovan sequence. Finally, we 

obtain the combinatorial and exponential representations and the 

finite sums of the Mersenne-Padovan numbers by the aid of the 

generating function and the generating matrix of the Mersenne-

Padovan sequence. 

Main Results 

Definition 1. A u v  real matrix ,= i jM m    is called a contractible 

matrix in the thk  column (resp. row.) if the thk  column (resp. 

row.) contains exactly two non-zero entries. 

Suppose that 
1 2, , , ux x x  are row vectors of the matrix M . If M  

is contractible in the thk  column such that , ,0, 0i k j km m   and 

,i j  then the ( ) ( )1 1u v−  −  matrix :ij kM  is obtained from M  by 

replacing the thi  row with , ,i k j j k im x m x+  and deleting the thj  row. 

The thk  column is called the contraction in the thk  column 

relative to the thi  row and the thj  row. 

In (Brualdi & Gibson, 1997), Brualdi and Gibson obtained that 

( ) ( )=per M per N  if M  is a real matrix of order >1  and N  is a 

contraction of M . 

Now we concentrate on finding relationships among the 

Mersenne-Padovan numbers and the permanents of certain matrices 

which are obtained by using the generating matrix of the Mersenne-

Padovan sequences.  

Let , =M Pa

ijF f
    be the    super-diagonal matrix, defined 

by 



 

--213-- 

 

3, if =  and =  for 1 ,

2, if =  and = 4 for 1 4,

1, if = 1 and =  for 1 1,

if =  and = 1 for 1 1
=

1,                           and

=  and = 3 for 1 3,

2, if =  and = 2 f

ij

i j

i j

i j

i j
f

i j

i j

   

   

   

   

   

 

 

+   −

+   −

+   −

−

+   −

− + or 1 2,

0, otherwise.

 












  −



 

for 5  . Then we have the following Theorem. 

Theorem 1. For 5  , 

,

4=M Pa PaperF M + . 

Proof. Let us consider matrix 
,M PaF  and the equation be hold for 

5  . Then we show that the equation holds for 1 + . If we expand 

the 
,M PaperF  by the Laplace expansion of permanent with respect 

to the first row, then we obtain 

, , , , , ,

1 1 2 3 4= 3 2 2M Pa M Pa M Pa M Pa M Pa M PaperF perF perF perF perF perF     + − − − −− − − + . 

Since 

,

4=M Pa PaperF M + , 

,

1 3=M Pa PaperF M − + , 

,

2 2=M Pa PaperF M − + , 

,

3 1=M Pa PaperF M − +  

and  
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,

4 =M Pa PaperF M −  

we easily obtain that 
,

1 5=M Pa PaperF M + + . So the proof is complete.                                                                  

Let , =M Pa

ijG g
    be the    matrix, defined by 

3, if =  and =  for 1 1,

2, if =  and = 4 for 1 4,

if = 1 and =  for 1 2

1,                           and

         =  and =  for ,
=

if =  and = 1 for 1 2

1,                  

ij

i j

i j

i j

i j
g

i j

   

   

   

   

   

  −

+   −

+   −

=

+   −

−          and

=  and = 3 for 1 3,

2, if =  and = 2 for 1 3,

0, otherwise.

i j

i j

   

   













+   −
− +   −



 

for 5  . Then we have the following Theorem. 

Theorem 2. For 5  , 

,

3=M Pa PaperG M + . 

Proof. Let us consider matrix 
,M PaG  and the equation be hold for 

5  . Then we show that the equation holds for 1 + . If we expand 

the 
,M PaperG  by the Laplace expansion of permanent with respect 

to the first row, then we obtain 

, , , , , ,

1 1 2 3 4= 3 2 2M Pa M Pa M Pa M Pa M Pa M PaperG perG perG perG perG perG     + − − − −− − − +

. 

Since 
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,

3=M Pa PaperG M + , 

,

1 2=M Pa PaperG M − + , 

,

2 1=M Pa PaperG M − + , 

,

3 =M Pa PaperG M −  

and  

,

4 1=M Pa PaperG M − −  

we easily obtain that 
,

1 4=M Pa PaperG M + + . So the proof is complete.                                                                     

Assume that , =M Pa

ijH h
    is the    matrix, defined by 

( )

,

,

1

1 th

1 1 0

= 1

0

0

M Pa

M Pa

H

G







−

−



 
 
 
 
 
 
  

 

for 5  , then we have the following results: 

Theorem 3. For 5  , 

2
,

0

=M Pa Pa

i

i

perH M




+

=

 . 

 Proof. If we extend 
,M FperG  with respect to the first row, we write 

, , ,

1 1=M Pa M Pa M PaperH perH perG  − −+  
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Thus, by the results and an inductive argument, the proof is easily 

seen.                                                       □ 

 

A matrix K  is called convertible if there is an n n  (1, 1)− -

matrix L  such that ( )= det ,perK K L  where K L  denotes the 

Hadamard product of K  and L . 

Now we give relationships among the Mersenne-Padovan 

numbers and the determinants of certain matrices which are obtained 

by using the matrices 
,M PaF , 

,M PaG  and 
,M PaH . Let 5   and let R  

be the    matrix, defined by 

.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
=

1 1 1 1 1

1 1 1 1 1

R

 
 
−
 
 −
 
 
 −
 

− 

 

 

Corollary 1. For 5  ,  

( ),

4det =M Pa PaF R M + , 

( ),

3det =M Pa PaG R M +  

and 

( )
2

,

0

det =M Pa Pa

i

i

H R M




+

=

  . 
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Proof. Since ( ), ,detM Pa M PaperF F R =  , 

( ), ,detM Pa M PaperG G R =   and ( ), ,detM Pa M PaperH H R =   for 

5   by Theorem 1., Theorem 2. and Theorem 3., we have the 

conclusion.                                                                                                                                                                                    

□ 

 

Let ( )1 2, , , vK k k k  be a v v  companion matrix as follows: 

( )

1 2

1 2

.

1 0 0
, , , =

0 1 0

v

v

k k k

K k k k

 
 
 
 
 
 

 

For more details on the companion type matrices, see (Lancaster & 

Tismenetsky, 1985; Lidl & Niederreiter, 1986). 

 

Theorem 4. (Chen and Louck (Chen & Louck, 1996)) The ( ),i j  

entry 
( ) ( ), 1 2, , ,
n

i j vk k k k  in the matrix ( )1 2, , ,n

vK k k k  is given by 

the following formula: 

                

( ) ( )
( )

1 1 1
, 1 2 1

11 2, , ,
1 2

, , , =
, ,

ttn j j v v v
i j v v

vvt t t
v

t t t t t
k k k k k k

t tt t t

++ + + + + 
 

+ + +  
                  

(2) 

where the summation is over nonnegative integers satisfying 

1 22 = ,vt t vt n i j+ + + − +  
( )1 1

1 1

!
=

, , ! !

v v

v v

t t t t

t t t t

+ + + + 
 
 

 is a 

multinomial coefficient, and the coefficients in (2) are defined to be 

1 if =n i j− . 
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Then we can give other combinatorial representations than for 

the Mersenne-Padovan numbers by the following Corollary. 

 

Corollary 2. Let 
Pa

nM  be the thn  Mersenne-Padovan number for 

4n  . Then 

.i   

( )

( ) ( )5

1 2 3 4 5

1 2 3 4 5 2 4 31

, , , , 1 2 3 4 5

= 3 2 1 2
, , , ,

t t tt tPa

n

t t t t t

t t t t t
M

t t t t t

++ + + + 
− − 

 
  

where the summation is over nonnegative integers satisfying 

1 2 3 4 52 3 4 5 = 4t t t t t n+ + + + − . 

.ii  

( )

( ) ( )5

1 2 3 4 5

1 2 3 4 55 2 4 31

, , , , 1 2 3 4 51 2 3 4 5

1
= 3 2 1 2

, , , ,2

t t tt tF

n

t t t t t

t t t t tt
M

t t t t tt t t t t

++ + + + 
 − − 

+ + + +  


 

where the summation is over nonnegative integers satisfying 

1 2 3 4 52 3 4 5 = 1t t t t t n+ + + + + .  

Proof. If we take = 5i , =1j  for the case i. and = 4i , = 5j  for 

the case ii. in Theorem 4., then we can directly see the conclusions 

from ( )
n

M

PaE .                                                                                    □ 

It is easy to see that the generating function of the Mersenne-

Padovan sequence  Pa

nM  is as follows: 

( ) ( )
4

2 3 4 5

2 3 4 5
= , 0 3 2 2 1

1 3 2 2

x
q x x x x x x

x x x x x
 − − − + 

− + + + −

. 
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Now considering the function ( )q x , we can give an exponential 

representation for the Mersenne-Padovan sequence by the following 

Theorem. 

 

Theorem 5. Let ( )q x  be generating function for the Mersenne-

Padovan sequence. The exponential representation for the 

Mersenne-Padovan sequence is as follows: 

( )
( )

( )4 2 3 4

=1

= exp 3 2 2

i
i

i

x
q x x x x x x

i

 
− − − + 

 
 
 . 

Proof. Since 

( )
( )2 3 4 5

4
ln = ln 1 3 2 2

q x
x x x x x

x
− − + + + −  

and  

( ) ( )

( )

( )

2 3 4 5 2 3 4

2
2 2 3 4

2 3 4

ln 1 3 2 2 = 3 2 2

1
                                                         3 2 2

2

1
                                                         3 2 2

i
i

x x x x x x x x x x

x x x x x

x x x x x
i

− + + + − − − − − + +


− − − + +

+ − − − +

 

by a simple calculation, we obtain the conclusion.                                                                                                    

□ 

Now we consider the sums of the Mersenne-Padovan numbers. Let 

 
=0

=
n

Pa

n j

j

S M  

for 4n  and let 
M

PaQ  and ( )
n

M

PaQ  be the 6 6  matrix such that 
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.

1 0 0 0 0

1

= 0

0

0

M M

Pa Pa
Q E

 
 
 
 
 
 
  

 

If we use induction on n , then we obtain 

 ( )
( )

3

2

1

1 .

1 0 0 0 0 0

=

n

nn
M

nPa M

n Pa

n

n

S

S
Q

S E

S

S

+

+

+

−

 
 
 
 
 
 
 
 
 
 

 

 



 

--221-- 

 

References 

Aküzüm, Y. (2020). The Hadamard-type Padovan-p 

sequences. Turkish Journal of Science, 5 (2), 102-109. 

Aküzüm, Y. & Deveci, Ö. (2021). The Arrowhead-Jacobsthal 

Sequences. Mathematica Montisnigri, 51 (3), 31-44. 

Bradie, B. (2010). Extension and refinements of some 

properties of sums involving Pell number. Missouri Journal of 

Mathematical Sciences, 22 (1), 37-43. 

Brualdi, R. A. & Gibson, P. B. (1997). Convex polyhedra of 

doubly stochastic matrices. I: applications of permanent function. 

Journal of Combinatorial Theory, Series A, 22 (2), 194-230. 

Catarino, P., Campos, H. & Vasco, P. (2016). On the Mersenne 

sequence. Annales Mathematicae et Informaticae, 46, 37-53. 

Chen, W. Y. & Louck, J. D. (1996). The combinatorial power 

of the companion matrix. Linear Algebra and its Applications, 232, 

261-278. 

Deveci, Ö. & Aküzüm, Y. (2022). The Hadamard-type k-step 

Fibonacci sequences. Analele Stiintifice ale Universitatii Al. I. Cuza 

din Iasi-Matematica, 68 (f.2), 153-165. 

Deveci, Ö., Aküzüm, Y. & Rashedi, M. E. (2022). The 

Hadamard-type k-step Pell sequences. Notes on Number Theory and 

Discrete Mathematics, 28 (2), 339-349. 

Deveci, Ö. (2021). On the connections among Fibonacci, Pell, 

Jacobsthal and Padovan numbers. Notes on Number Theory and 

Discrete Mathematics, 27 (2), 111-128. 

Deveci, Ö. & Shannon A. G. (2021). Matrix Manipulations for 

Properties of Fibonacci p-Numbers and their Generalizations. 

Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi-Matematica, 

67 (f.1), 85-95. 



 

--222-- 

 

Erdağ, Ö. (2023). The Mersenne-Padovan Sequence and Binet 

Formulas. 8. International Sciences and Innovation Congress, 14-15 

October 2023, Ankara, Turkey, Congress Book, (pp. 262-270). 

Erdağ, Ö. & Deveci, Ö. (2020a). On The Connections Between 

Jacobsthal Numbers and Fibonacci p-Numbers. Turkish Journal of 

Science, 5 (2), 147-156. 

Erdağ, Ö. & Deveci, Ö. (2020b). On The Connections 

Between Padovan Numbers and Padovan p-Numbers. International 

Journal of Open Problems in Computer Science and Mathematics, 

13 (4), 33-47. 

Erdağ, Ö. & Deveci, Ö. (2021). The Representation and Finite 

Sums of the Padovan-p Jacobsthal Numbers. Jordan Journal of 

Mathematics and Statistics, 15 (3), 507-521. 

Erdağ, Ö. & Deveci, Ö. (2022). On the connections between 

Padovan numbers and Fibonacci p-numbers. Turkish Journal of 

Science, 5 (3), 134-141. 

Erdağ, Ö., Deveci, Ö. & Shannon A. G. (2020). Matrix 

Manipulations for Properties of Pell p-Numbers and their 

Generalizations. Analele Stiintifice ale Universitatii Ovidius 

Constanta-Seria Matematica, 28 (3), 89-102. 

Horadam, A. F. (1994). Applications of modified Pell numbers 

to representations. Ulam Quarterly, 3 (1), 34-53. 

Kilic, E. (2008). The Binet fomula, sums and representations 

of generalized Fibonacci p-numbers. European Journal of 

Combinatorics, 29 (3), 701-711. 

Kılıc, E. (2009). The generalized Pell (p,i)-numbers and their 

Binet formulas, combinatorial representations, sums. Chaos, 

Solitons Fractals, 40(4), 2047-2063. 

Kilic, E. & Tasci, D. (2006). The generalized Binet formula, 

representation and sums of the generalized order-k Pell numbers. 

Taiwanese Journal of Mathematics, 10(6), 1661-1670. 



 

--223-- 

 

Lancaster, P. & Tismenetsky, M. (1985). The theory of 

matrices: with applications. Elsevier. 

Lidl, R. & Niederreiter, H. (1986). Introduction to finite fields 

and their applications. Cambridge UP. 

Shannon, A. G., Erdağ, Ö. & Deveci, Ö. (2021). On the 

connections between Pell numbers and Fibonacci p-numbers. Notes 

on Number Theory and Discrete Mathematics, 27 (1), 148-160. 

Shannon, A. G., Horadam, A. F. & Anderson, P. G. (2006). 

The Auxiliary Equation Associated with the Plastic Number. Notes 

on Number Theory and Discrete Mathematics, 12 (1), 1-12. 

Stakhov, A. P. (1999). A Generalization of the Fibonacci Q-

matrix. Reports of the National Academy of Sciences of Ukraine, 9, 

46-49. 

Taşçı, D. & Firengiz, M. C. (2010). Incomplete Fibonacci and 

Lucas p-Numbers. Mathematical and Computer Modelling, 52 (9-

10), 1763-1770. 

Tuğlu, N., Koçer, E. G. & Stakhov, A. (2011). Bivariate 

Fibonacci like p-polinomials. Applied Mathematics and 

Computation, 217 (24), 10239-10246. 

 

 



 

--224-- 

 

 

 

CHAPTER XI 

 

 

Parametrıc Versıon  Of Modıfıed Bernsteın Operators 

 

 

 

 

Emine GÜVEN 
 

The approximation theory developed under the leadership of 

Karl Weierstrass is an important step towards a deep understanding 

of the analysis of functions in mathematics. Weierstrass developed 

this theory by addressing the problems that arose regarding 

differentiable and continuous functions in the mid-19th century. 

Approximation theory can be broadly defined as the field that 

studies how closely a function can be imitated by another sequence 

or series of functions. Addressing some particularly challenging 

situations in mathematics, Weierstrass showed that a function could 

be expressed as an infinite sum with a series of other functions. This 

means that any function can be emulated to the desired precision, 

despite the complexity of previously determined functions. 

Approximation theory was developed because it is an 

important tool in the mathematical world in efforts to understand the 

complexity of a function and reach more general conclusions. 
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Russian mathematician Sergei Natanovich Korovkin, who worked in 

this field, made important contributions to this field. This theorem, 

known as the Korovkin Theorem, defines the property of function 

sequences to approach a certain class under certain conditions and 

opens the door to many important results in this field. 

One of the mathematicians who made significant contributions 

to Korovkin's approximation theory is David Emmanuel Bernstein. 

Bernstein defined a class of polynomials that was particularly 

effective in the approximation of bounded functions and their 

derivatives. These polynomials increase the applicability to 

Korovkin's approximation theory by characterizing the general 

behavior of functions and providing certain approximation 

properties. Bernstein's works are considered important steps towards 

building more firmly the foundations of Korovkin's approximation 

theory in mathematical analysis. These works have been a source of 

inspiration for many mathematicians in the fields of function theory 

and approximation theory. 

Parametric generalizations of operators within approximation 

theory is a field that studies the parametric approximation of one 

class of functions by another class of functions. These 

generalizations attempt to understand the approximation properties 
of a function in a broader context, usually by examining parametric 

families of operators. These studies aim to develop new methods for 

better approximation of functions in mathematical analysis and 

applied mathematics. 

Parametric generalizations of Bernstein operators are given in 

[Chen et al., 2017]. Parametric generalizations of operators [Aral et 

al., 2019], [Cai et al., 2018], [Cai et al., 2021], [Cai et al., 2022], 

[Çekim et al., 2022], [Kadak et al., 2021], [Kajla et al., 2020], 

[Mohiuddine et al., 2021], [Mohiuddine et al., 2020], [Özger, 2019], 

[Srivastava et al., 2019] and [ Srivastava et al., 2021]. 

In this study, the proof of the Korovkin type theorem will be 

given by defining the parametric modified Bernstein operator for the 
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modified Bernstein operator on the symmetric interval, which was 

defined and studied by Izgi and Cilo in 2012. 

 

Definition 1.1  

 𝓉 ∈ [−1,1] and 𝑓 ∈ 𝐶[−1,1] , 

𝑪𝜂(𝑓;  𝓉) =
1

2𝜂
∑ (

𝜂
𝜅
) (1 +  𝓉)𝜅(1 −  𝓉)𝜂−𝑘𝑓 (2

𝜅

𝜂
− 1)

𝜂
𝑘=0   

 (1) 

is called the operator 𝑪𝜂(𝑓;  𝓉). 

Definition 1.2 

℘𝜂,𝜅 = (
𝜂
𝜅
) (1 −  𝓉)𝜂−𝜅(1 +  𝓉)𝜅 

Parametric generalization of the modified Bernstein operator for each 

𝑓 ∈ 𝐶[−1,1], 𝜂 ∈ ℕ and 𝓉 ∈ [−1,1] 

𝕮𝜂,𝛾(𝑓;  𝓉) = ∑℘𝜂,𝜅
(𝛾)
𝑓 (2

𝜅

𝜂
− 1)

𝜂

𝑘=0

. 

Where 𝜂 ≥ 1, 0 ≤ 𝜛 ≤ 1,  𝓉 ∈ [−1,1] and 

℘1,0
𝛾 ( 𝓉) = 1 −  𝓉,   ℘1,1

(𝛾)( 𝓉) = 1 +  𝓉 and 

to be 

℘𝜂,𝜅
(𝛾)( 𝓉) = {

(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅

) (1 +  𝓉) +
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅 − 2

) (1 −  𝓉) 

+
𝛾

2𝜂
(
𝜂
𝜅
) (1 +  𝓉)(1 −  𝓉)} (1 +  𝓉)𝜅−1(1 −  𝓉)𝜂−𝜅−1,  𝜂 ≥ 2 

and 
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(
𝜂
𝜅
) = {

𝜂!

(𝜂 − 𝜅)! 𝜅!
    ,    0 ≤ 𝜅 ≤ 𝜂 

0        ,          𝑜𝑡ℎ𝑒𝑟   

   

is. Here 

(
𝜂 − 2
−2

) = (
𝜂 − 2
−1

) = 0 

is. 

(
𝜂 − 2
𝜅

) = (1 −
𝜅

𝜂−1
) (
𝜂 − 1
𝜅

)   and  (
𝜂 − 2
𝜅 − 2

) =
𝜅

𝜂−1
(
𝜂 − 1
𝜅

) 

 it is clear that it is. 

Lemma 1.1 

For every 𝑓 ∈ 𝐶[−1,1], 𝜂 ∈ ℕ and 𝓉 ∈ [−1,1] 

𝑔 (2
𝜅

𝜂
− 1) = 𝑓 (2

𝜅

𝜂
− 1) (1 −

𝜅

𝜂 − 1
) + 𝑓 (2

𝜅 + 1

𝜂
− 1)

𝜅

𝜂 − 1
 

So, 

𝕮𝜂,𝛾(𝑓;  𝓉) = (1 − 𝛾)∑𝑔(2
𝜅

𝜂
− 1) (1 −  𝓉)𝜂−𝜅−1 (

𝜂 − 1
𝜅

)

𝜂−1

𝜅=0

(1 +  𝓉)𝜅 

+𝛾∑𝑓 (2
𝜅

𝜂
− 1)

𝜂

𝜅=0

(1 −  𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 +  𝓉)𝜅 

is. 

Proof: 

𝕮𝜂,𝛾(𝑓;  𝓉) = ∑ {
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅

) (1 +  𝓉) +
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅 − 2

) (1 −  𝓉)

𝜂

𝜅=0
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+
𝛾

2𝜂
(
𝜂
𝜅
) (1 +  𝓉)(1 −  𝓉)} (1 −  𝓉)𝜂−𝜅−1(1 +  𝓉)𝜅−1𝑓 (2

𝜅

𝜂
− 1) 

=∑
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅

) (1 +  𝓉)

𝜂

𝜅=0

(1 −  𝓉)𝜂−𝜅−1(1 +  𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

+∑
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅 − 2

) (1 − 𝓉)

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅−1(1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

+∑
𝛾

2𝜂
(
𝜂
𝜅
) (1 + 𝓉)(1 − 𝓉)(1 − 𝓉)𝜂−𝜅−1

𝜂

𝜅=0

(1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

=∑
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅

)

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅−1(1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

+∑
(1 − 𝛾)

2𝜂−1
(
𝜂 − 2
𝜅 − 2

)

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅(1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

+∑
𝛾

2𝜂
(
𝜂
𝜅
)

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝑘(1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 2
𝜅

) (1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

+(1 − 𝛾)∑
1

2𝜂−1
(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂 − 2
𝜅 − 2

) (1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

+𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅𝑓 (2

𝜅

𝜂
− 1) 

= (1 − 𝛾)(𝑐1 + 𝑐2) + 𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅𝑓 (2

𝜅

𝜂
− 1) 
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𝑐1 = ∑
1

2𝜂−1

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 2
𝜅

) (1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

𝑐2 =∑
1

2𝜂−1

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂 − 2
𝜅 − 2

) (1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

 

𝑐1is zero for 𝜂 = 𝜅, 𝑐2, is zero for 𝜅 = 0. Let’s 

 

𝑐1 = ∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 2
𝜅

) (1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

𝑐2 =∑
1

2𝜂−1

𝜂

𝜅=1

(1 − 𝓉)𝜂−𝜅 (
𝜂 − 2
𝜅 − 2

) (1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 

is getting. 

𝑐1 = ∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 2
𝜅

) (1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

=
1

2𝜂−1
∑(1−

𝜅

𝜂 − 1
) (
𝜂 − 1
𝜅

)

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1(1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

and 

𝑐2 =
1

2𝜂−1
∑(1− 𝓉)𝜂−𝜅

𝜂

𝜅=1

(
𝜂 − 2
𝜅 − 2

) (1 + 𝓉)𝜅−1𝑓 (2
𝜅

𝜂
− 1) 
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=
1

2𝜂−1
∑(1 − 𝓉)𝜂−𝜅−1 (

𝜂 − 2
𝜅 − 1

)

𝜂−1

𝜅=0

(1 + 𝓉)𝜅𝑓 (2
𝜅 + 1

𝜂
− 1) 

=
1

2𝜂−1
∑

𝜅

𝜂 − 1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅𝑓 (2
𝜅 + 1

𝜂
− 1) 

 

𝑐1 + 𝑐2 =
1

2𝜂−1
∑{𝑓 (2

𝜅

𝜂
− 1) (1 −

𝜅

𝜂 − 1
)+𝑓 (2

𝜅 + 1

𝜂
− 1)

𝜅

𝜂 − 1
}

𝜂−1

𝜅=0

 

× (1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

is found. Here if we write, 

𝑔 (2
𝜅

𝜂
− 1) = 𝑓 (2

𝜅

𝜂
− 1) (1 −

𝜅

𝜂 − 1
) + 𝑓 (2

𝜅 + 1

𝜂
− 1)

𝜅

𝜂 − 1
 

then, it  is called modified Bernstein operators  parametric version  

𝕮𝜂,𝛾(𝑓;  𝓉) = (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 −  𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 +  𝓉)𝜅𝑔 (2
𝜅

𝜂

− 1) 

+ 𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 −  𝓉)𝜂−𝑘 (
𝜂
𝜅
) (1 +  𝓉)𝜅𝑓 (2

𝜅

𝜂
− 1). 

Lemma 1.2  

For 𝕮𝜂,𝛾(𝑓;  𝓉)  

𝑖) 𝕮𝜂,𝛾(1; 𝓉) = 1, 

𝑖𝑖) 𝕮𝜂,𝛾(𝑡; 𝓉) = 𝓉, 



 

--231-- 

 

𝑖𝑖𝑖) 𝕮𝜂,𝛾(𝑡
2; 𝓉) =

𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
 

Proof: 

𝑖) 𝕮𝜂,𝛾(1; 𝓉) = (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

+𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅 

= (1 − 𝛾)
1

2𝜂−1
2𝜂−1 +  𝛾 = 1. 

𝑖𝑖) 𝕮𝜂,𝛾(𝑡; 𝓉) = (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅𝑔 (2
𝜅

𝜂

− 1) 

+ 𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅 (

𝜂
𝑘
)

𝜂

𝜅=0

(1 + 𝓉)𝜅𝑓 (2
𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

× [𝑓 (2
𝜅

𝜂
− 1) (1 −

𝜅

𝜂 − 1
) + 𝑓 (2

𝜅 + 1

𝜂
− 1)

𝜅

𝜂 − 1
] 

+ 𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅𝑓 (2

𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 
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× [(2
𝜅

𝜂
− 1) (1 −

𝜅

𝜂 − 1
) + (2

𝜅 + 1

𝜂
− 1)

𝜅

𝜂 − 1
] 

+ 𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 (2

𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

× [(
2𝜅 − 𝜂

𝜂
) (
𝜂 − 1 − 𝜅

𝜂 − 1
) + (

2𝜅 + 2 − 𝜂

𝜂
)

𝜅

𝜂 − 1
] 

+ 𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅 (

𝜂
𝜅
)

𝜂

𝜅=0

(1 + 𝓉)𝜅 (
2𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

× [
2𝜅𝜂 − 2𝜅 − 2𝜅2 − 𝜂2 + 𝜂 + 𝜂𝜅 + 2𝜅2 + 2𝜅 − 𝜂𝜅

𝜂(𝜂 − 1)
] 

+ 𝛾
2

2𝜂𝜂
∑𝜅

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅

−  𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 [
2𝜅𝜂 − 𝜂2 + 𝜂

𝜂(𝜂 − 1)
] 
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+ 𝛾
2

2𝜂𝜂
∑𝜅(1 − 𝓉)𝜂−𝜅 (

𝜂
𝜅
)

𝜂

𝜅=0

(1 + 𝓉)𝜅

−  𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅𝑘 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 [
𝜂(2𝜅 − 𝜂 + 1)

𝜂(𝜂 − 1)
] 

+ 𝛾
2

2𝜂𝜂
∑𝜅

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 −  𝛾 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 [
2𝜅 − 𝜂 + 1

𝜂 − 1
] 

+ 𝛾
2

2𝜂𝜂
∑𝜅(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅 −  𝛾 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 [
2𝜅

𝜂 − 1
− 1] 

+ 𝛾
2

2𝜂𝜂
∑𝜅

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅
𝜂!

(𝜂 − 𝜅)! 𝜅!
(1 + 𝓉)𝜅 −  𝛾 

 

=
2(1 − 𝛾)

(𝜂 − 1)2𝜂−1
∑𝜅

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

−
(1 − 𝛾)

2𝜂−1
∑(1− 𝓉)𝜂−𝜅−1 (

𝜂 − 1
𝜅

) (1 + 𝓉)𝜅

𝜂−1

𝜅=0
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+ 𝛾
2

2𝜂𝜂
∑𝜅

𝜂

𝜅=1

(1 − 𝓉)𝜂−𝜅
𝜂!

(𝜂 − 𝜅)! 𝜅!
(1 + 𝓉)𝜅 −  𝛾 

=
2(1 − 𝛾)

(𝜂 − 1)2𝜂−1
∑𝜅

𝜂−1

𝜅=1

(1 − 𝓉)𝜂−𝜅−1
(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅 

−
(1 − 𝛾)

2𝜂−1
∑(1− 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅

𝜂−1

𝜅=0

 

+ 𝛾
2

2𝜂𝜂
∑(1 − 𝓉)𝜂−𝜅−1

𝜂−1

𝜅=0

𝜂!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅+1 −  𝛾 

=
2(1 − 𝛾)

(𝜂 − 1)2𝜂−1
∑(1 − 𝓉)𝜂−𝜅−2

(𝜂 − 1)!

(𝜂 − 𝜅 − 2)! 𝜅!
(1 + 𝓉)𝜅+1

𝜂−2

𝜅=0

 

−
(1 − 𝛾)

2𝜂−1
∑(1− 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅

𝜂−1

𝜅=0

 

+ 𝛾
2

2𝜂𝜂
∑(1 − 𝓉)𝜂−𝜅−1

𝜂−1

𝜅=0

𝜂!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅+1 −  𝛾 

=
2(1 − 𝛾)(1 + 𝓉)(𝜂 − 1)

(𝜂 − 1)2𝜂−1
∑(1− 𝓉)𝜂−𝜅−2

(𝜂 − 2)!

(𝜂 − 𝜅 − 2)! 𝜅!
(1 + 𝓉)𝜅

𝜂−2

𝜅=0

 

−
(1 − 𝛾)

2𝜂−1
∑(1− 𝓉)𝜂−𝑘−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝑘!
(1 + 𝓉)𝑘

𝜂−1

𝜅=0

 

+ 𝛾
2(1 + 𝓉)𝜂

2𝜂𝜂
∑(1 − 𝓉)𝜂−𝜅−1

𝜂−1

𝑘=0

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅 −  𝛾 
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=
2(1 − 𝛾)(1 + 𝓉)

2𝜂−1
2𝜂−2 −

(1 − 𝛾)

2𝜂−1
2𝜂−1 +  𝛾

2(1 + 𝓉)𝜂

2𝜂𝜂
2𝜂−1 −  𝛾 

= (1 − 𝛾)(1 + 𝓉) − (1 − 𝛾) +  𝛾(1 + 𝓉) −  𝛾 

= (1 − 𝛾)(1 + 𝓉 − 1) +  𝛾(1 + 𝓉 − 1) 

= (1 − 𝛾)𝓉 +  𝛾𝓉 

𝕮𝜂,𝛾(𝑡; 𝓉) = 𝓉 

is obtained. 

 

𝑖𝑖𝑖) If 𝕮𝜂,𝛾(𝑡
2; 𝓉) is calculated, 

 𝕮𝜂,𝛾(𝑡
2; 𝓉) = (1 − 𝛾)∑

1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅𝑔 (2
𝜅

𝜂

− 1) 

+ 𝛾∑
1

2𝜂

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅𝑓 (2

𝜅

𝜂
− 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

× [(2
𝜅

𝜂
− 1)

2

(1 −
𝜅

𝜂 − 1
) + (2

𝜅 + 1

𝜂
− 1)

2 𝜅

𝜂 − 1
] 

+ 𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅

𝜂

𝑘=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅 (2

𝜅

𝜂
− 1)

2

 

Here,  
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[(
2𝜅

𝜂
− 1)

2

(1 −
𝜅

𝜂 − 1
) + (

2𝜅 + 2

𝜂
− 1)

2 𝜅

𝜂 − 1
] 

= (
4𝜅2

𝜂2
−
4𝜅

𝜂
+ 1) (1 −

𝜅

𝜂 − 1
) + (

4𝑘2 + 8𝑘 + 4

𝜂2
−
4𝑘 + 4

𝜂
+ 1)

𝑘

𝜂 − 1
 

=
4𝑘2

𝜂2
−
4𝑘

𝜂
+ 1 − (

4𝑘2

𝜂2
−
4𝑘

𝜂
+ 1)

𝜅

𝜂 − 1
+
4𝜅2 + 8𝜅 + 4

𝜂2
𝜅

𝜂 − 1

−
4𝜅 + 4

𝜂

𝜅

𝜂 − 1
+

𝜅

𝜂 − 1
 

=
4𝜅2

𝜂2
−
4𝜅

𝜂
+ 1

+ [−
4𝜅2

𝜂2
+
4𝜅

𝜂
− 1 +

4𝜅2 + 8𝜅 + 4

𝜂2
−
4𝜅 + 4

𝜂

+ 1]
𝜅

𝜂 − 1
 

=
4𝜅2

𝜂2
−
4𝜅

𝜂
+ 1

+ [−
4𝜅2

𝜂2
+
4𝜅

𝜂
− 1 +

4𝜅2

𝜂2
+
8𝜅

𝜂2
+
4

𝜂2
−
4𝜅

𝜂
−
4

𝜂

+ 1]
𝜅

𝜂 − 1
 

=
4𝜅2

𝜂2
−
4𝜅

𝜂
+ 1 + [

8𝜅

𝜂2
+
4

𝜂2
−
4

𝜂
]

𝜅

𝜂 − 1
 

=
4𝜅2(𝜂 − 1)

𝜂2(𝜂 − 1)
−
4𝜅𝜂(𝜂 − 1)

𝜂2(𝜂 − 1)
+

8𝜅2

𝜂2(𝜂 − 1)
+

4𝜅

𝜂2(𝜂 − 1)
−

4𝜅𝜂

𝜂2(𝜂 − 1)
+ 1 

=
4𝜅2𝜂 − 4𝜅2 − 4𝜅𝜂2 + 4𝜅𝜂 + 8𝜅2 + 4𝜅 − 4𝜅𝜂

𝜂2(𝜂 − 1)
+ 1 

=
4𝜅2𝜂 + 4𝑘𝜅2 − 4𝜅𝜂2 + 4𝜅

𝜂2(𝜂 − 1)
+ 1 
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=
4𝜅2(𝜂 + 1) − 4𝜅(𝜂2 − 1)

𝜂2(𝜂 − 1)
+ 1 

=
4𝜅2(𝜂 + 1)

𝜂2(𝜂 − 1)
−
4𝜅(𝜂 − 1)(𝜂 + 1)

𝜂2(𝜂 − 1)
+ 1 

 

=
4𝜅2(𝜂 + 1)

𝜂2(𝜂 − 1)
−
4𝜅(𝜂 + 1)

𝜂2
+ 1 

if we substitue in 𝕮𝑛,𝛾(𝑡
2; 𝓉) 

𝕮𝜂,𝛾(𝑡
2; 𝓉) = 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 [
4(𝜂 + 1)

𝜂2(𝜂 − 1)
𝜅2

−
4(𝜂 + 1)

𝜂2
𝜅 + 1] 

+ 𝛾∑
1

𝜂
(1 − 𝓉)𝜂−𝜅 (

𝜂
𝜅
)

𝜂

𝜅=0

(1 + 𝓉)𝑘 (
4𝜅2

𝜂2
−
4𝜅

𝜂
+ 1) 

= (1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅
4(𝜂 + 1)

𝜂2(𝜂 − 1)
𝜅2 

−(1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅
4(𝜂 + 1)

𝜂2
𝜅 

+(1 − 𝛾)∑
1

2𝜂−1

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅

+  𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅 (

𝜂
𝜅
)

𝜂

𝜅=0

(1 + 𝓉)𝜅
4𝜅2

𝜂2
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− 𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅

𝜂

𝜅=0

(
𝜂
𝜅
) (1 + 𝓉)𝜅

4𝜅

𝜂

+  𝛾∑
1

2𝜂
(1 − 𝓉)𝜂−𝜅 (

𝜂
𝜅
)

𝜂

𝜅=0

(1 + 𝓉)𝜅 

=
4(𝜂 + 1)(1 − 𝛾)

2𝜂−1𝜂2(𝜂 − 1)
∑ 𝜅2

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

−
4(1 − 𝛾)(𝜂 + 1)

2𝜂−1𝜂2
∑𝜅

𝜂−1

𝜅=0

(1 − 𝓉)𝜂𝑛−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

+
(1 − 𝛾)

2𝜂−1
∑(1− 𝓉)𝜂−𝜅−1

𝜂−1

𝜅=0

(
𝑛 − 1
𝜅

) (1 + 𝓉)𝜅

+ 
4𝛾

𝜂22𝜂
∑𝜅2

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 

− 
4𝛾

𝜂2𝜂
∑𝜅

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 + 

𝛾

2𝜂
2𝜂  

=
(𝜂 + 1)(1 − 𝛾)

2𝑛−3𝜂2(𝜂 − 1)
∑𝜅2

𝜂−1

𝜅=0

(1 − 𝓉)𝜂−𝜅−1 (
𝜂 − 1
𝜅

) (1 + 𝓉)𝜅 

+ 
𝛾

𝜂22𝜂−2
∑𝜅2

𝜂

𝜅=0

(1 − 𝓉)𝜂−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 

−
(1 − 𝛾)(𝜂 + 1)

2𝜂−3𝜂2
∑𝜅(1 − 𝓉)𝜂−𝜅−1 (

𝜂 − 1
𝜅

)

𝜂−1

𝜅=0

(1 + 𝓉)𝜅 

− 
𝛾

𝜂2𝜂−2
∑𝜅

𝜂

𝜅=0

(1 − 𝓉)𝑛−𝜅 (
𝜂
𝜅
) (1 + 𝓉)𝜅 +

(1 − 𝛾)

2𝜂−1
2𝜂−1 +  𝛾 
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=
(𝜂 + 1)(1 − 𝛾)

2𝜂−3𝜂2(𝜂 − 1)
∑𝜅(𝜅 − 1)

𝜂−1

𝜅=2

(1 − 𝓉)𝜂−𝜅−1
(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅 

+
(𝜂 + 1)(1 − 𝛾)

2𝑛−3𝜂2(𝜂 − 1)
∑𝜅

𝜂−1

𝜅=1

(1 − 𝓉)𝜂−𝜅−1
(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅 

+ 
𝛾

𝜂22𝜂−2
∑𝜅(𝜅 − 1)(1 − 𝓉)𝜂−𝜅

𝜂!

(𝜂 − 𝜅)! 𝜅!

𝜂

𝜅=2

(1 + 𝓉)𝜅 

+ 
𝛾

𝜂22𝜂−2
∑𝜅

𝜂

𝜅=1

(1 − 𝓉)𝜂−𝜅
𝜂!

(𝜂 − 𝜅)! 𝜅!
(1 + 𝓉)𝜅 

−
(1 − 𝛾)(𝜂 + 1)

2𝜂−3𝜂2
∑𝜅(1 − 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!

𝜂−1

𝜅=1

(1 + 𝓉)𝜅 

− 
𝛾

𝜂2𝜂−2
∑𝜅

𝜂

𝜅=1

(1 − 𝓉)𝜂−𝜅
𝜂!

(𝜂 − 𝜅)! 𝜅!
(1 + 𝓉)𝜅 + 1 

=
(𝜂 + 1)(1 − 𝛾)

2𝜂−3𝜂2(𝜂 − 1)
∑(1 − 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! (𝜅 − 2)!

𝜂−1

𝜅=2

(1 + 𝓉)𝜅 

+
(𝜂 + 1)(1 − 𝛾)

2𝜂−3𝜂2(𝜂 − 1)
∑(1 − 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! (𝜅 − 1)!

𝜂−1

𝜅=1

(1 + 𝓉)𝜅 

+ 
𝛾

𝜂22𝜂−2
∑(1− 𝓉)𝜂−𝜅

𝜂

𝜅=2

𝜂!

(𝜂 − 𝜅)! (𝜅 − 2)!
(1 + 𝓉)𝜅 

+ 
𝛾

𝜂22𝜂−2
∑(1− 𝓉)𝜂−𝜅

𝜂

𝜅=1

𝜂!

(𝜂 − 𝜅)! (𝜅 − 1)!
(1 + 𝓉)𝜅 
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−
(1 − 𝛾)(𝜂 + 1)

2𝜂−3𝜂2
∑(1 − 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! (𝜅 − 1)!

𝜂−1

𝜅=1

(1 + 𝓉)𝜅 

− 
𝛾

𝜂2𝜂−2
∑(1− 𝓉)𝜂−𝜅

𝜂

𝜅=1

𝜂!

(𝜂 − 𝜅)! (𝜅 − 1)!
(1 + 𝓉)𝜅 + 1 

=
(𝜂 + 1)(1 − 𝛾)

2𝜂−3𝜂2(𝜂 − 1)
∑(1 − 𝓉)𝜂−𝜅−3

𝜂−3

𝜅=0

(𝜂 − 1)!

(𝜂 − 𝜅 − 3)! 𝜅!
(1 + 𝓉)𝜅+2 

+
(𝜂 + 1)(1 − 𝛾)

2𝜂−3𝜂2(𝜂 − 1)
∑(1 − 𝓉)𝜂−𝜅−2

𝜂−2

𝜅=0

(𝜂 − 1)!

(𝜂 − 𝜅 − 2)! 𝜅!
(1 + 𝓉)𝜅+1 

+ 
𝛾

𝜂22𝜂−2
∑(1 − 𝓉)𝜂−𝜅−2

𝜂−2

𝜅=0

𝜂!

(𝜂 − 𝜅 − 2)! 𝜅!
(1 + 𝓉)𝜅+2 

+ 
𝛾

𝜂22𝜂−2
∑(1 − 𝓉)𝜂−𝜅−1

𝜂!

(𝜂 − 𝜅 − 1)! 𝜅!

𝜂−1

𝜅=0

(1 + 𝓉)𝜅+1 

−
(1 − 𝛾)(𝜂 + 1)

2𝜂−3𝜂2
∑(1 − 𝓉)𝜂−𝜅−2

(𝜂 − 1)!

(𝜂 − 𝜅 − 2)! 𝜅!

𝜂−2

𝜅=0

(1 + 𝓉)𝜅+1 

− 
𝛾

𝜂2𝜂−2
∑(1 − 𝓉)𝜂−𝜅−1

𝜂−1

𝜅=0

𝜂!

(𝜂 − 𝜅 − 1)! 𝜅!
(1 + 𝓉)𝜅+1 + 1 

=
(𝜂 + 1)(1 − 𝛾)(𝜂 − 1)(𝜂 − 2)(1 + 𝓉)2

2𝜂−3𝜂2(𝜂 − 1)
∑(1

𝜂−3

𝜅=0

− 𝓉)𝜂−𝜅−3
(𝜂 − 3)!

(𝜂 − 𝜅 − 3)! 𝜅!
(1 + 𝓉)𝜅 
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+
(𝜂 + 1)(1 − 𝛾)(𝜂 − 1)(1 + 𝓉)

2𝜂−3𝜂2(𝜂 − 1)
∑(1 − 𝓉)𝜂−𝜅−2

𝜂−2

𝜅=0

(𝜂 − 2)!

(𝜂 − 𝜅 − 2)! 𝜅!
(1

+ 𝓉)𝜅 

+ 
𝛾𝜂(𝜂 − 1)(1 + 𝓉)2

𝜂22𝜂−2
∑(1 − 𝓉)𝜂−𝜅−2

𝜂−2

𝜅=0

(𝜂 − 2)!

(𝜂 − 𝜅 − 2)! 𝜅!
(1 + 𝓉)𝜅 

+ 
𝛾𝜂(1 + 𝓉)

𝜂22𝜂−2
∑(1− 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!

𝜂−1

𝜅=0

(1 + 𝓉)𝜅 

−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 1)(1 + 𝓉)

2𝜂−3𝜂2
∑(1 − 𝓉)𝜂−𝜅−2

(𝜂 − 2)!

(𝜂 − 𝜅 − 2)! 𝑘!

𝜂−2

𝜅=0

(1

+ 𝓉)𝜅 

− 
𝛾𝜂(1 + 𝓉)

𝜂2𝜂−2
∑(1− 𝓉)𝜂−𝜅−1

(𝜂 − 1)!

(𝜂 − 𝜅 − 1)! 𝜅!

𝜂−1

𝜅=0

(1 + 𝓉)𝜅 + 1 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(1 + 𝓉)2

2𝜂−3𝜂2
2𝜂−3 +

(𝜂 + 1)(1 − 𝛾)(1 + 𝓉)

2𝜂−3𝜂2
2𝜂−2 

+ 
𝛾(𝜂 − 1)(1 + 𝓉)2

𝜂2𝜂−2
2𝜂−2 + 

𝛾(1 + 𝓉)

𝜂2𝑛−2
2𝑛−1

−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 1)(1 + 𝓉)

2𝜂−3𝜂2
2𝜂−2 

− 
𝛾(1 + 𝓉)

2𝜂−2
2𝜂−1 + 1 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(1 + 𝓉)2

𝜂2
+
2(𝜂 + 1)(1 − 𝛾)(1 + 𝓉)

𝜂2
 

+ 
𝛾(𝜂 − 1)(1 + 𝓉)2

𝜂
+ 
2𝛾(1 + 𝓉)

𝜂
−
2(1 − 𝛾)(𝜂 + 1)(𝜂 − 1)(1 + 𝓉)

𝜂2
 

− 2𝛾(1 + 𝓉) + 1 
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=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(1 + 𝓉)2 + 2(𝜂 + 1)(1 − 𝛾)(1 + 𝓉)

𝜂2
 

−
2(1 − 𝛾)(𝜂 + 1)(𝜂 − 1)(1 + 𝓉)

𝜂2
 

 

+ 
𝛾(𝜂 − 1)(1 + 𝓉)2 + 2𝛾(1 + 𝓉)

𝜂
−  2𝛾(1 + 𝓉) + 1 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(1 + 𝓉)2 + [1 − (𝜂 − 1)]2(𝜂 + 1)(1 − 𝛾)(1 + 𝓉)

𝜂2
 

+ 
𝛾(𝜂 − 1)𝜂(1 + 𝓉)2 + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(1 + 𝓉)2 + (2 − 𝜂)2(𝜂 + 1)(1 − 𝛾)(1 + 𝓉)

𝜂2
 

+ 
𝛾(𝜂 − 1)𝜂(1 + 𝓉)2 + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)[(1 + 𝓉)2 − 2(1 + 𝓉)]

𝜂2
 

+ 
𝛾𝜂2(1 + 𝓉)2 − 𝛾𝜂(1 + 𝓉)2 + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)[𝓉2 + 2𝓉 + 1 − 2 − 2𝓉]

𝜂2
 

+ 
𝛾𝜂2(1 + 𝓉)2 − 𝛾𝜂(1 + 𝓉)2 + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)(𝓉2 − 1)

𝜂2
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+ 
𝛾𝜂2(1 + 𝓉)2 − 𝛾𝜂(1 + 𝓉)2 + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)𝓉2

𝜂2
−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)

𝜂2
 

+ 
𝛾𝜂2(1 + 2𝓉 + 𝓉2) − 𝛾𝜂(1 + 2𝓉 + 𝓉2) + 2𝛾𝜂(1 + 𝓉) −  2𝛾(1 + 𝓉)𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)𝓉2

𝜂2
−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)

𝜂2
 

+ 
𝛾𝜂2 + 2𝛾𝜂2𝓉 + 𝛾𝜂2𝓉2 − 𝛾𝜂 − 2𝛾𝜂𝓉 − 𝛾𝜂𝓉2 + 2𝛾𝜂 + 2𝛾𝜂𝓉 −  2𝛾𝜂2 − 2𝛾𝜂2𝓉 + 𝜂2

𝑛𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)𝓉2

𝜂2
−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)

𝜂2
 

+ 
𝛾𝜂2𝓉2 − 𝛾𝜂𝓉2 + 𝛾𝜂 −  𝛾𝜂2 + 𝜂2

𝜂2
 

=
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2)𝓉2 + 𝛾𝜂2𝓉2 − 𝛾𝜂𝓉2

𝜂2

−
(1 − 𝛾)(𝜂 + 1)(𝜂 − 2) − 𝛾𝜂 +  𝛾𝜂2 − 𝜂2

𝜂2
 

 

=
[(1 − 𝛾)(𝜂2 − 𝜂 − 2) + 𝛾𝜂2 − 𝛾𝜂]𝓉2

𝜂2

−
(1 − 𝛾)(𝜂2 − 𝜂 − 2) − 𝛾𝜂 +  𝛾𝜂2 − 𝜂2

𝜂2
 

=
[𝑛2 − 𝑛 − 2 − 𝑛2𝛾 + 𝑛𝛾 + 2𝛾 + 𝛾𝑛2 − 𝛾𝑛]𝓉2

𝜂2
 

+
𝜂2 − 𝜂 − 2 − 𝜂2𝛾 + 𝜂𝛾 + 2𝛾 − 𝛾𝜂 +  𝛾𝜂2 − 𝜂2

𝜂2
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=
[𝜂2 − 𝜂 − 2 + 2𝛾]𝓉2

𝜂2
−
𝜂 + 2 − 2𝛾

𝜂2
 

 𝐶𝑛,𝛾(𝑡
2; 𝓉) =

𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
 

is obtained. 

Lemma 1.3 

The central moments of the operator 𝕮𝑛,𝛾(𝑓; 𝓉) are as follows. 

𝑖)𝕮𝜂,𝛾((𝑡 − 𝓉)
0, 𝑥) = 1 

𝑖𝑖) 𝕮𝜂,𝛾(𝑡 − 𝓉, 𝓉) = 0 

𝑖𝑖𝑖) 𝕮𝜂,𝛾((𝑡 − 𝓉)
2, 𝓉) = [

−𝜂 − 2 + 2𝛾

𝜂2
] 𝑥2 −

𝜂 + 2 − 2𝛾

𝜂2
 

Proof: 

𝑖)𝕮𝜂,𝛾((𝑡 − 𝓉)
0, 𝓉) = 𝕮𝑛,𝛾(1, 𝓉) = 1 

𝑖𝑖) 𝕮𝜂,𝛾(𝑡 − 𝓉, 𝓉) = 𝓉 − 𝓉 = 0 

𝑖𝑖𝑖) 𝕮𝜂,𝛾((𝑡 − 𝓉)
2, 𝓉) = 𝕮𝜂,𝛾(𝑡

2, 𝓉) −  2𝓉𝕮𝜂,𝛾(𝑡, 𝓉) + 𝓉
2 𝕮𝜂,𝛾(1, 𝓉) 

=
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
− 2𝓉𝓉 + 𝓉2 

 =
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
− 𝓉2  

= [
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
− 1] 𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
  

𝕮𝑛,𝛾((𝑡 − 𝓉)
2, 𝓉) = [

−𝜂 + 2(𝛾 − 1)

𝜂2
] 𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
  

is having. 
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Theorem 1.1 

𝑓 ∈ 𝕮[−1,1], 𝑛 ∈ ℕ and 𝓉 ∈ [−1,1]. In this case, 

lim
𝜂→∞

‖𝕮𝜂,𝛾(𝑓; 𝓉) − 𝑓(𝓉)‖𝐶[−1,1] 
  = 0

  
 

Proof: 

For 𝑓(𝑡) = 1 and 𝑓(𝑡) = 𝑡 the proof is clearly. Now, for  𝑓(𝑡) = 𝑡2,  

lim
𝜂→∞

‖𝕮𝜂,𝛾(𝑓; 𝓉) − 𝓉
2 ‖

𝐶[−1,1] 
 =

  
 

lim
𝜂→∞

max
𝑥∈[−1,1]

|𝕮𝜂,𝛾(𝑡
2; 𝓉) − 𝓉2|

= lim
𝜂→∞

max
𝑥∈[−1,1]

|
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2

− 𝓉2| 

= lim
𝜂→∞

max
𝑥∈[−1,1]

|
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
𝓉2 −

𝜂 + 2(1 − 𝛾)

𝜂2
− 𝓉2| 

= lim
𝜂→∞

max
𝑥∈[−1,1]

|[
𝜂(𝜂 − 1) + 2(𝛾 − 1)

𝜂2
− 1] 𝓉2 −

𝜂 + 2(1 − 𝛾)

𝑛2
| 

= lim
𝜂→∞

max
𝑥∈[−1,1]

|[
−𝜂 + 2(𝛾 − 1)

𝜂2
]| 𝓉2 + lim

𝜂→∞
max

𝑥∈[−1,1]
|
𝜂 + 2(1 − 𝛾)

𝜂2
| 

= 0 

is getting. So, we have next form 

lim
𝜂→∞

‖𝕮𝜂,𝛾(𝑓; 𝓉) − 𝑓(𝓉)‖𝐶[−1,1] 
  = 0.

  
 

Conclusion 

Firstly, important equations that will be used to examine the 

operator's approximation results have been obtained. Then, the 
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central moment of the operator was calculated. Finally, with the help 

of Korovkin type theorem, it was shown that every function in space 

can be approached with the defined operator. In fact, many different 

features of the defined operator can be examined. For example 

convexity, monotonicity of operators. In fact, many different 

features of the defined operator can be examined. for example 

convexity, monotonicity of operators. Using modulus of continuity 

we could be calculated of rate of convergence and Vornovskaya type 

theorem. On the other hand,  with this operator, some special 

sequences and polynomials can be selected and the approximation 

can be shown visually and numerically.See(Yılmaz & Soykan, 

2023), (Aktas, & Soykan, 2023). Also, we On the other hand, this 

method we use can be applied to different operators in the literature. 

For example: (Bilgin and Eren 2023), (Bozma and Bilgin, 2023). 
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CHAPTER XII 

 

 

Approximation with Gadjiev-Ibragimov Operator on 

a Mobile Interval 

 

 

 

 

Gurel BOZMA1 

 

INTRODUCTION 

Studies in the field of approximation theory gained momentum 

after Weierstrass, who proved the existence of a polynomial 

converging to every continuous function defined in a finite interval, 

and Bohman's study investigating the approximation conditions for 

linear positive operators in the interval [0,1] and the field is largely 

shaped by showing that in Korovkin’s study, it is shown that if the 

conditions for the test functions are met, the convergence of the 

operator will be obtained for all functions in space.  
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After this important theorem of Korovkin, operators that could 

be the application of the theorem were constructed and new 

operators were designed by combining several operators by different 

researchers and the field was developed rapidly. Here are a few 

examples of these operators: (Bernstein, 1915), (Dogru, 1997), 

(Coskun, 2011), (Gonul & Coskun, 2012, 2013), (Kaya & Gonul, 

2013), (Deniz & Aral, 2015), (Acar, 2017), (Bilgin & Cetinkaya, 

2018), (Gonul Bilgin & Ozgur, 2019), (Bilgin & Eren, 2021), 

(Bozma & Bars, 2022) (Herdem & Buyukyazici, 2020). 

The Gadjiev-Ibragimov operator, which is one of the preferred 

operators in the studies in the literature, was first defined in 

(Ibragimov & Gadjiev, 1970) and has been studied from different 

perspectives by many researchers, especially the students trained by 

Gadjiev. 

In the study, the generalized Gadjiev-Ibragimov operator, 

which is well known in the literature, is modified to provide suitable 

properties for test functions over a general interval whose limit is 

variable-dependent. Important properties of the approximation to 

continuous functions are introduced with a sequences of linear 

positive operators defined on a mobile interval. Also, the rate of 

convergent is calculated numerically by obtaining significant 

equations for the defined our operators. 

 The approach speed was calculated with the help of the 

continuity module by obtaining important equations for the operator. 

The approximation results obtained with graphical and numerical 

calculations have been put forward in practice. 

METHOD 

In this section, the operator to be studied will be defined and 

important approximation properties will be given. 
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Definition 2.1 Let 𝜙𝑛 and 𝑔𝑛 be sequences satisfying the 

conditions lim
𝑛→∞

𝑔𝑛 = ∞ , lim
𝑛→∞

𝜙𝑛

𝑔𝑛
= 0 and lim

𝑛→∞

𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑛 =

1 , lim
𝑛→∞

𝑛+𝜇

𝑔𝑛+𝑛+𝜓
= 0 . 

Let 𝑅𝑛,𝑒(𝑥)  be a function that satisfies the following conditions 

depending on the parameters 𝑒 and 𝑛 and let 𝜇, 𝜓 ∈ ℝ+. 

1-) For all 𝑛 ∈ ℕ , 𝑒 ∈ ℕ0 and 𝜇 < 𝜓, also for 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
],  

(−1)𝑒𝑅𝑛,𝑒(𝑥) ≥ 0, 

2-) For every 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
]  

∑ 𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
∞
𝑒=0 = 1, 

3-) For every 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
], there is an integer 𝓏 such that the equality 

𝑅𝑛,𝑒(𝑥) = −𝑛𝑥𝑅𝑛+𝓏,𝑒−1(𝑥), 

will be satisfied and (𝑛 + 𝓏) ∈ ℕ0. In this case, the operator, which 

is a generalization of the Gadjiev-Ibragimov operator, for every 𝑓 ∈

𝐶 [0,
𝑛+𝜇

𝑛+𝜓
] 

�̃�𝑛(𝑓, 𝑥) =  ∑𝑓 (
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0
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will be in the form. Obviously this operator is linear and positive. 

 

Lemma 2. 1 Let 𝑓 ∈ 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
] The following equations are valid 

for  

�̃�𝑛(𝑓, 𝑥) =  ∑𝑓 (
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 . 

𝐢) �̃�𝑛(1, 𝑥) =  1, 

𝐢𝐢)�̃�𝑛(ℎ, 𝑥) =
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑥 +

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
 ,  

𝐢𝐢𝐢) �̃�𝑛(ℎ
2, 𝑥) =

(𝜙𝑛)
2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥2 +

((2𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

𝑥 

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
. 

Proof According to the 2nd property of the operator, since 

∑𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!

∞

𝑒=0

= 1 

obviously  

�̃�𝑛(1, 𝑥) = ∑ 𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
∞
𝑒=0 =  1  
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is found. Using the 3rd property of the operator; Since (𝑛 + 𝓏) ∈ ℕ0  

 �̃�𝑛(ℎ, 𝑥) =∑(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
𝑒

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=1

 

+∑(
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
1

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

(𝑒 − 1)!

∞

𝑒=1

 

+∑(
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
−𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛+𝓏,𝑒−1(𝑥)

(−𝜙𝑛)
𝑒

(𝑒 − 1)!

∞

𝑒=1

+
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
 

= 
−𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
∑𝑅𝑛+𝓏,𝑒−1(𝑥)

(−𝜙𝑛)
𝑒

(𝑒 − 1)!

∞

𝑒=1

+
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
 

= 
−𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
∑(−𝜙𝑛)𝑅𝑛+𝓏,𝑒−1(𝑥)

(−𝜙𝑛)
𝑒−1

(𝑒 − 1)!

∞

𝑒=1

+
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
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= (
𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
)∑𝑅𝑛+𝓏,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

+
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
                                  [(𝑒 → 𝑒 + 1) (n + 𝓏)  ∈  ℕ] 

=
𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
+

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
  

equality is reached. Similarly 

�̃�𝑛(ℎ
2, 𝑥) =  ∑(

𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!

∞

𝑒=0

 

= ∑(
𝑒2 + 2𝑒(𝑛 + 𝜇) + (𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
𝑒2

(𝑔𝑛 + 𝑛 + 𝜓)
2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

+∑(
2𝑒(𝑛 + 𝜇)

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

+ ∑(
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
𝑒(𝑒 − 1)

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=2
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+∑(
𝑒

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=1

 

+∑(
2(𝑛 + 𝜇)

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

(𝑒 − 1)!

∞

𝑒=1

 

+∑(
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= ∑(
𝜙𝑛

2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒−2

(𝑒 − 2)!

∞

𝑒=2

 

+(
1

𝑔𝑛 + 𝑛 + 𝜓
)(

𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
) 

+∑(
2(𝑛 + 𝜇)(−𝑛𝑥)

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛+𝓏,𝑒−1(𝑥)

(−𝜙𝑛)
𝑒

(𝑒 − 1)!

∞

𝑒=1

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

= ∑(
𝜙𝑛

2𝑛(𝑛 + 𝓏)𝑥2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛+2𝓏,𝑒−2(𝑥)

(−𝜙𝑛)
𝑒−2

(𝑒 − 2)!

∞

𝑒=2

 

+(
1

𝑔𝑛 + 𝑛 + 𝜓
)(

𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
) 

+∑(
2(𝑛 + 𝜇)𝜙𝑛𝑛𝑥

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛+𝓏,𝑒−1(𝑥)

(−𝜙𝑛)
𝑒−1

(𝑒 − 1)!

∞

𝑒=1

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
. 
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�̃�𝑛(ℎ
2, 𝑥) =  ∑(

𝜙𝑛
2𝑛(𝑛 + 𝓏)𝑥2

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛+2𝓏,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

+(
1

𝑔𝑛 + 𝑛 + 𝜓
)(

𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
) 

+∑(
2(𝑛 + 𝜇)𝜙𝑛𝑛𝑥

(𝑔𝑛 + 𝑛 + 𝜓)2
)𝑅𝑛+𝓏,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

= 
𝜙𝑛

2𝑛(𝑛 + 𝓏)𝑥2

(𝑔𝑛 + 𝑛 + 𝜓)2
+

𝑛𝜙𝑛𝑥

(𝑔𝑛 + 𝑛 + 𝜓)2
+
2(𝑛 + 𝜇)𝜙𝑛𝑛𝑥

(𝑔𝑛 + 𝑛 + 𝜓)2
 

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

=
𝜙𝑛

2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥2 +

𝑛𝜙𝑛(2(𝑛 + 𝜇) + 1)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥 +

(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

using (𝑛 + 𝓏) ∈ ℕ0 and (𝑛 + 2𝓏) ∈ ℕ0  

�̃�𝑛(ℎ
2, 𝑥) =

(𝜙𝑛)
2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥2 +

(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

𝑥 

+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)
2
 

is found. This completes the proof. 

Theorem 2.1 Let 
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�̃�𝑛(𝑓, 𝑥) =  ∑𝑓 (
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

. 

Then, for all 𝑓 ∈ 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
] , 

 lim
𝑛→∞

‖�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
= 0 . 

Proof It is sufficient to clearly show that the conditions of the 

Korovkin’s Theorem are satisfied. According to Lemma 2.1, since 

the equation 

|�̃�𝑛(1, 𝑥) − 1| = |∑ 𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
∞
𝑒=0 − 1| = 0  

is valid, according to the norm definition in 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
] ; 

lim
𝑛→∞

‖�̃�𝑛(1, 𝑥) − 1‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
= 0 .  

is found. Similarly since the equality  

 

|�̃�𝑛(ℎ, 𝑥) − 𝑥| = |
𝑛𝜙𝑛𝑥

𝑔𝑛 + 𝑛 + 𝜓
+

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
− 𝑥| 

= |𝑥 (
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑛 − 1) +

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
| 

is valid. For 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
] and lim

𝑛→∞

𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑛 = 1, the inequality  
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max
x ∈ [0,

𝑛+𝜇
𝑛+𝜓

]

|�̃�𝑛(ℎ, 𝑥) − 𝑥| 

= max
x ∈ [0,

𝑛+𝜇
𝑛+𝜓

]

|𝑥 (
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑛 − 1) +

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
| 

≤ |
𝑛 + 𝜇

𝑛 + 𝜓
| |

𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

𝑛 − 1| + |
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
|. 

can be written. If the limit of both sides is taken 

lim
𝑛→∞

‖�̃�𝑛(ℎ, 𝑥) − 𝑥‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
 

≤ lim
𝑛→∞

|
𝑛 + 𝜇

𝑛 + 𝜓
| lim
𝑛→∞

 |
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1| + lim

𝑛→∞
|

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
| = 0 

and  

lim
𝑛→∞

‖�̃�𝑛(ℎ, 𝑥) − 𝑥‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
= 0. 

is found. Finally 

lim
𝑛→∞

‖�̃�𝑛(ℎ
2, 𝑥) − 𝑥2‖

𝐶[0,
𝑛+𝜇
𝑛+𝜓

]
= 0. 

will be shown. 

|�̃�𝑛(ℎ
2, 𝑥) − 𝑥2| 

= |
(𝜙𝑛)

2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥2 +

(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

𝑥 
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+
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
− 𝑥2| 

= |𝑥2 ((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) − 1) 

+𝑥 (
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

) + 
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
| 

and then 

max
x ∈ [0,

𝑛+𝜇
𝑛+𝜓

]

|�̃�𝑛(ℎ
2, 𝑥) − 𝑥2| 

= max
x ∈ [0,

𝑛+𝜇
𝑛+𝜓

]

|𝑥2 ((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) − 1) 

+𝑥 (
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

)+ 
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
| 

≤ (
𝑛 + 𝜇

𝑛 + 𝜓
)
2

|((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) − 1)| 

+(
𝑛 + 𝜇

𝑛 + 𝜓
) |(

(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)

2
)| + | 

(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)
2
| 

is found. Since the definitions of (𝜙𝑛), (𝑔𝑛) and using  (𝑛 + 𝓏) ∈ ℕ  

lim
𝑛→∞

(
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) 
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= lim
𝑛→∞

(
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)𝑛 lim

𝑛→∞
(

𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

) (𝑛 + 𝓏) = 1, 

lim
𝑛→∞

(
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

) 

= lim
𝑛→∞

(
(2(𝑛 + 𝜇) + 1)

(𝑔𝑛 + 𝑛 + 𝜓)
) lim
𝑛→∞

(
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
) = 0  

equations are valid. So 

lim
𝑛→∞

‖�̃�𝑛(ℎ
2, 𝑥) − 𝑥2‖

𝐶[0,
𝑛+𝜇
𝑛+𝜓

]
 

≤ lim
𝑛→∞

(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) − 1) 

+ lim
𝑛→∞

(
𝑛 + 𝜇

𝑛 + 𝜓
)(
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

) + lim
𝑛→∞

(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

Since the inequality is valid 

lim
𝑛→∞

‖�̃�𝑛(ℎ
2, 𝑥) − 𝑥2‖

𝐶[0,
𝑛+𝜇
𝑛+𝜓

]
= 0 

will be shown. Then, since all the conditions of Korovkin's Theorem 

are valid, for every 𝑓 ∈ 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
]  

lim
𝑛→∞

‖�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
= 0  

is achieved. 
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RESULTS 

In this section, to analyze the results of the method is shown in this 

study, the approximation rate of the generalized Gadjiev Ibragimov 

operator in the space of continuous functions on [0,
𝑛+𝜇

𝑛+𝜓
] will be 

calculated with the help of the modulus of continuity. First of all, the 

definition of modulus of continuity will be reminded.  

Let 𝐾 = [0,
𝑛+𝜇

𝑛+𝜓
], for all 𝑓 ∈ 𝐶(𝐾), 𝛿 > 0 modulus of continuity of 

function 𝑓 as defined  

 𝜔(𝑓, 𝛿) = sup
|𝑡−𝑥|<𝛿
𝑥∈𝐾

|𝑓(𝑡) − 𝑓(𝑥)|. 

Here, the following known features of the modulus of continuity will 

be used. 

Let 𝑓 ∈ 𝐶(𝐾).  

i) Let 𝛿 ≥ 0.  𝜔(𝑓, 𝛿) is a monotonically increasing function with 

respect to 𝛿. 

ii) For all 𝑓 ∈ 𝐶(𝐾), lim
𝛿→0

𝜔(𝑓, 𝛿) = 0. 

iii)  For 𝜆 > 0, 𝜔(𝑓, 𝜆𝛿) ≤ (1 + 𝜆)𝜔(𝑓, 𝛿). 

iv) Let 𝑥, 𝑡 ∈ 𝐵 and for all 𝑓 ∈ 𝐶(𝐾),  
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|𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝜔(𝑓, 𝛿) (1 +
|𝑡 − 𝑥|

𝛿
). 

 

Theorem 3.1 Let 𝑓 ∈ 𝐶(𝐾) and (𝜙𝑛), (𝑔𝑛) be sequences defined in 

Definition 2.1. In this case, for 𝑛 is large enough and 𝐷 is a constant 

where independent from (𝜙𝑛), (𝑔𝑛); 

‖�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
 

≤ 𝐷𝜔(𝑓;√(𝑛
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5). 

Proof 

Using 

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| ≤ �̃�𝑛(|𝑓(𝑡) − 𝑓(𝑥)|, 𝑥), 

we get 

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| ≤∑|𝑓 (
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑓(𝑥)| 𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

  

If ℎ =
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
is selected in properties of modulus of continuity; for 

all  𝛿𝑛 > 0  
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|𝑓 (
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
) − 𝑓(𝑥)| ≤ 𝜔(𝑓, 𝛿𝑛) (1 +

|
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
−𝑥|

𝛿𝑛
)  

is written. Using linearity and positivity, it is found as 

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| 

≤∑𝜔(𝑓, 𝛿𝑛)(1 +
|
𝑒 + 𝑛 + 𝜇
𝑔𝑛 + 𝑛 + 𝜓

− 𝑥|

𝛿𝑛
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

= 𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
∑|(

𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑥|𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!
+ 1

∞

𝑒=0

} 

Here, if 𝑀 is defined as 

𝑀 =∑|(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑥|𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0

 

=∑(|(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑥|

2

)

1
2

[𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
]

1
2

∞

𝑒=0

 

× [𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
]

1/2

. 

From the Cauchy Schwarz inequality, it can be written as 
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𝑀 ≤ [∑|(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑥|

2
∞

𝑒=0

𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
]

1
2

 

× [𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
]

1/2

 

= [∑|(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) − 𝑥|

2
∞

𝑒=0

𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
]

1/2

 

Therefore, since 

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| 

≤  𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[∑ |

𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
− 𝑥|

2

𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
∞
𝑒=0 ]

1
2⁄

+ 1}   

here using  

((
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
) − 𝑥)

2

= (
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
)
2

− 2𝑥 (
𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
) + 𝑥2,  

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| ≤  𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[∑ (

𝑒+𝑛+𝜇

𝑔𝑛+𝑛+𝜓
)
2

𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!
∞
𝑒=0   

−2𝑥∑(
𝑒 + 𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)𝑅𝑛,𝑒(𝑥)

(−𝜙𝑛)
𝑒

𝑒!

∞

𝑒=0
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+𝑥2∑𝑅𝑛,𝑒(𝑥)
(−𝜙𝑛)

𝑒

𝑒!

∞

𝑒=0

]

1/2

+ 1} 

=  𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
(�̃�𝑛(ℎ

2, 𝑥) − 2𝑥�̃�𝑛(h, 𝑥) + 𝑥
2�̃�𝑛(1, 𝑥))

1/2

+ 1} 

inequality is written. For 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
]  If 

�̃�𝑛(ℎ
2, 𝑥), �̃�𝑛(h, 𝑥), �̃�𝑛(1, 𝑥)  are written in this inequality. 

Considering definition of (𝜙𝑛), (𝑔𝑛), for 𝑛 large enough 
𝜙𝑛

𝑔𝑛+𝑛+𝜓
≤

1,
𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑛 ≤ 2  and using  

2𝜇𝑛(𝜙𝑛)
2

(𝑔𝑛+𝑛+𝜓)
2 <

4𝜇

𝑔𝑛+𝑛+𝜓
<

4𝜇

𝑛+𝜓
  and  

𝑛(𝜙𝑛)
2

(𝑔𝑛+𝑛+𝜓)
2 <

2

𝑔𝑛+𝑛+𝜓
<

2

𝑛+𝜓
 we get 

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| 

≤  𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
(�̃�𝑛(ℎ

2, 𝑥) − 2𝑥�̃�𝑛(h, 𝑥) + 𝑥
2�̃�𝑛(1, 𝑥))

1/2

+ 1} 

≤ 𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

(
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) 

+(
𝑛 + 𝜇

𝑛 + 𝜓
)(
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

) +
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

−2(
𝑛 + 𝜇

𝑛 + 𝜓
)(

𝑛𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

(
𝑛 + 𝜇

𝑛 + 𝜓
) +

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) 
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+(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

]

1/2

+ 1} 

=  𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛(𝑛 + 𝓏) 

−2
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
+ 1) 

+(
𝑛 + 𝜇

𝑛 + 𝜓
)(
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

− 2
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) 

+(
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)
2

]

1/2

+ 1} 

= 𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

((
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

− 2
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
+ 1) 

+(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

((
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
)
2

𝑛𝑧 

+
1

(
𝑛 + 𝜇
𝑛 + 𝜓)

(
(2(𝑛 + 𝜇) + 1)𝜙𝑛𝑛

(𝑔𝑛 + 𝑛 + 𝜓)2
− 2

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)

 

 
 

 

+(
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)
2

]

1/2

+ 1} 
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= 𝜔(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(
𝑛 + 𝜇

𝑛 + 𝜓
)
2

((
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

+ 2
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 

+
1

(
𝑛 + 𝜇
𝑛 + 𝜓)

(
2𝑛2𝜙𝑛

(𝑔𝑛 + 𝑛 + 𝜓)2
+

2𝜇𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

+
𝑛𝜙𝑛

(𝑔𝑛 + 𝑛 + 𝜓)2
 

−
2𝑛

𝑔𝑛 + 𝑛 + 𝜓
−

2𝜇

𝑔𝑛 + 𝑛 + 𝜓
))+(

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)
2

]

1/2

+ 1} 

≤ 𝜔(𝑓, 𝛿𝑛) {
(
𝑛 + 𝜇
𝑛 + 𝜓)

𝛿𝑛
[(𝑛

𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

− 1)
2

+ 2
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 

+
1

(
𝑛 + 𝜇
𝑛 + 𝜓)

(
4𝜇

𝑛 + 𝜓
+

4

𝑛 + 𝜓
) + (

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
)
2

]

1/2

+ 1

}
 

 
 

≤ 𝜔(𝑓, 𝛿𝑛) {
(
𝑛 + 𝜇
𝑛 + 𝜓)

𝛿𝑛
[(𝑛

𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

− 1)
2

 

+2
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5]

1
2
+ 1}. 

Then, with selection 
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𝛿𝑛: = √(𝑛
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

 +
2𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5 

for independent constant 𝐷 from 𝑛, we have 

‖�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)‖𝐶[0,𝑛+𝜇
𝑛+𝜓

]
 

≤ 𝐷𝜔(𝑓;√(𝑛
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5). 

It has been shown by this theorem that the rate of approximation is 

√(𝑛
𝜙𝑛

𝑔𝑛+𝑛+𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑧 + 5 and this rate can be increased 

according to the selection of 𝜙𝑛 and 𝑔𝑛. 

 

Lemma 3.1 The first three central moments for the defined Gadjiev 

Ibragimov type operator are as follows 

i) 𝜑𝑛,0(𝑥) = 1, 

ii) 𝜑𝑛,1(𝑥) = 𝑥 [𝑛
𝜙𝑛

𝑔𝑛+𝑛+𝜓
− 1] +

𝑛+𝜇

𝑔𝑛+𝑛+𝜓
, 

iii) 𝜑𝑛,2(𝑥) = (
(𝜙𝑛)

2𝑛(𝑛+𝓏)

(𝑔𝑛+𝑛+𝜓)
2 − 2

𝑛𝜙𝑛

𝑔𝑛+𝑛+𝜓
+ 1)𝑥2 + (

(2(𝑛+𝜇)+1)𝑛𝜙𝑛
(𝑔𝑛+𝑛+𝜓)

2  

−2
𝑛+𝜇

𝑔𝑛+𝑛+𝜓
)𝑥 + (

𝑛+𝜇

𝑔𝑛+𝑛+𝜓
)
2

. 
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Proof. 

i) 𝜑𝑛,0(𝑥) = �̃�𝑛((h − 𝑥)
0, 𝑥) = �̃�𝑛(1, 𝑥) = 1. 

ii) 𝜑𝑛,1(𝑥) = �̃�𝑛(h − 𝑥, 𝑥) = �̃�𝑛(h, 𝑥) − 𝑥�̃�𝑛(1, 𝑥) 

=
𝑛𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑥 +

𝑛+𝜇

𝑔𝑛+𝑛+𝜓
− 𝑥. 

iii) 𝜑𝑛,2(𝑥) = �̃�𝑛((h − 𝑥)
2, 𝑥) 

= �̃�𝑛(h
2, 𝑥) − 2𝑥�̃�𝑛(h, 𝑥) + 𝑥

2�̃�𝑛(1, 𝑥) 

=
(𝜙𝑛)

2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
𝑥2 + (

(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

)𝑥 +
(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
 

−2𝑥 (
𝑛𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑥 +

𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) + 𝑥2 

= (
(𝜙𝑛)

2𝑛(𝑛 + 𝓏)

(𝑔𝑛 + 𝑛 + 𝜓)2
− 2

𝑛𝜙𝑛
𝑔𝑛 + 𝑛 + 𝜓

+ 1) 𝑥2 

+(
(2(𝑛 + 𝜇) + 1)𝑛𝜙𝑛
(𝑔𝑛 + 𝑛 + 𝜓)2

−2
𝑛 + 𝜇

𝑔𝑛 + 𝑛 + 𝜓
) 𝑥 +

(𝑛 + 𝜇)2

(𝑔𝑛 + 𝑛 + 𝜓)2
. 

 

Definition 3.2 Let 𝑃 ∈ ]0,1[, functions that satisfy the condition 

|𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝑁|𝑡 − 𝑥|𝑃 
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are called Lipschitz class functions. N is called the Lipschitz 

constant. The  class of Lipschitz functions is denoted by 𝑓 ∈

𝐿𝑖𝑝𝑁 (𝑃, 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
]). 

 

Theorem 3.2 Let 𝑥 ∈ [0,
𝑛+𝜇

𝑛+𝜓
]. For bounded 𝑓 defined on  ℝ, 𝑓 ∈

𝐿𝑖𝑝𝑁 (𝑃, 𝐶 [0,
𝑛+𝜇

𝑛+𝜓
]) and 0 < 𝑃 ≤ 1. Then   

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 𝑃𝑁 ((𝑛
𝜙𝑛

𝑔𝑛+𝑛+𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛+𝑛+𝜓
𝑧 + 5)

𝑃

2

. 

Proof 

Let 𝑓 ∈ 𝐿𝑖𝑝𝑁(𝑃). Using modulus of continuity we get  𝜔(𝑓, 𝛿) ≤

𝑁𝛿𝑃. From Theorem 3.1  

|�̃�𝑛(𝑓, 𝑥) − 𝑓(𝑥)| 

≤ 𝑃𝜔(𝑓, √(𝑛
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5) 

≤ 𝑃𝑁 [(𝑛
𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
− 1)

2

+
2𝜙𝑛

𝑔𝑛 + 𝑛 + 𝜓
𝑧 + 5]

𝑃/2

 

is written. This completes the proof. 
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Example 3.1 Below is the graph of the approximation of the function 

𝑓(𝑥) = 𝑥2  (dark blue) with the operator �̃�𝑛(𝑓, 𝑥)  in Fig.1. Here 

(𝜙𝑛) = 𝑛 , (𝑔𝑛) = 𝑛
2 ,  𝜇 = 3,  𝜓 = 5, �̃�5(𝑓, 𝑥)  with red, �̃�10(𝑓, 𝑥) 

with black, �̃�12(𝑓, 𝑥)with cyan, �̃�13(𝑓, 𝑥) with magenta drawing is 

made. 

 

 

Fig.1. Graph of approximation to function 𝑓 

 

Example 3.2 Below is the graph of the approximation of the function 

𝑓(𝑥) = 𝑥2 (blue) with the operator �̃�𝑛(𝑓, 𝑥) in Fig.2. Here (𝜙𝑛) =

𝑛 , (𝑔𝑛) = 𝑛2 ,  𝜇 = 2,  𝜓 = 10,  �̃�5(𝑓, 𝑥)  with red, �̃�10(𝑓, 𝑥)  with 

black, �̃�12(𝑓, 𝑥)with cyan, �̃�13(𝑓, 𝑥) with magenta drawing is made. 
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Fig.2. Graph of approximation to function 𝑓 

Example 3.3 Below is the graph of the approximation of the function 

𝑓(𝑥) = 5𝑥2 (blue) with the operator �̃�𝑛(𝑓, 𝑥) in Fig.3. Here (𝜙𝑛) =

1 , (𝑔𝑛) = 𝑛 , 𝜇 = 1,  𝜓 = 1.4, �̃�1(𝑓, 𝑥)  with red, �̃�5(𝑓, 𝑥)  with 

black, �̃�10(𝑓, 𝑥)with cyan, �̃�15(𝑓, 𝑥) with magenta drawing is made. 

 

Fig.3 Graph of approximation to function 𝑓 



 

--274-- 

 

 

Example 3.4 Below is the graph of the approximation of the function 

𝑓(𝑥) = 5𝑥2 (blue) with the operator �̃�𝑛(𝑓, 𝑥) in Fig.4. Here (𝜙𝑛) =

1, (𝑔𝑛) = 𝑛, 𝜇 = 2, 𝜓 = 3, �̃�1(𝑓, 𝑥) with red, �̃�5(𝑓, 𝑥) with black, 

�̃�10(𝑓, 𝑥)with cyan, �̃�15(𝑓, 𝑥) with magenta drawing is made. 

 

Fig.4 graph of approximation to function f 

Example 3.5  

Below is the table for the rate of convergence to the function 𝑓(𝑥) =

5𝑒(𝑥
2+1) with the operator �̃�𝑛(𝑓, 𝑥).  
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Table 1. The error bound of function 𝑓(𝑥) = 5𝑒(𝑥
2+1)  for (𝜙𝑛) =

1, (𝑔𝑛) = 𝑛. 

𝒏 Error calculation of approximation to the function with 

�̃�𝒏(𝒇, 𝒙) 

 0.2025819086 108 

𝟏𝟎𝟐 0.1440999653108 

𝟏𝟎𝟑 0.1383000757108 

𝟏𝟎𝟒 0.1377214965108 

𝟏𝟎𝟓 0.1376636543108 

𝟏𝟎𝟔 0.1376578700108 

𝟏𝟎𝟕 0.1376572929108 

𝟏𝟎𝟖 0.1376572340108 

𝟏𝟎𝟗 0.1376572294108 

 

 

Example 3.6  

Below is the table for the rate of convergence to the function 𝑓(𝑥) =

𝑥2+1

3𝑒𝑥+1
 with the operator �̃�𝑛(𝑓, 𝑥).  
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Table 2. The error bound of function 𝑓(𝑥) =
𝑥2+1

3𝑒𝑥+1
 for (𝜙𝑛) = 1, 

(𝑔𝑛) = 𝑛. 

𝒏 Error calculation of approximation to the function with 

�̃�𝒏(𝒇, 𝒙) 

 0.9267182048 

𝟏𝟎𝟐 0.9051598220 

𝟏𝟎𝟑 0.9025763898 

𝟏𝟎𝟒 0.9023129756 

𝟏𝟎𝟓 0.9022865822 

𝟏𝟎𝟔 0.9022839432 

𝟏𝟎𝟕 0.9022836790 

𝟏𝟎𝟖 0.9022836524 

𝟏𝟎𝟗 0.9022836504 

 

CONCLUSIONS 

In our study, where important approximation features were 

obtained, the selection of the moving range increased the usability 

of our operator for researches where it was insufficient to deal with 

a fixed interval. This study, which includes the generalization of 

some previously defined operators, includes the range limits 

associated with the establishment of the operator and the changing 

and generalizing approach features accordingly. For example 

(Bozma and Bars, 2022)  and (Bilgin and Bars, 2022). Since it does 

not contain derivative expressions as in the classical Gadjiev-

Ibragimov operator, important properties related to the operator can 

be obtained by using only continuous functions and the properties of 

the sum formula. The described operator is a preferable tool for 

researchers looking for a suitable operator for daily life problems.
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CHAPTER XIII 

 

 

Rough Statıstıcal Convergence For Trıple Dıfference 

Sequences In Neutrosophıc Normed Spaces 

 

 

 

Nazmiye GONUL BILGIN 

 

1.INTRODUCTION 

We have tried to cope with uncertainties at many stages of our 

lives. In addition to situations of truth and falsehood, we frequently 

encounter situations involving uncertainty, doubt and indecision. It 

is not easy to say for sure whether some objects are inside or outside 

a category. In such cases, we can overcome the situation by using 

partial or gradual membership. All these concepts revealed 

neutrosophic philosophy, which is considered a newly location of 

philosophy. On the other hand, the Neutrosophic concept, which was 

transferred to these fields due to the classical concept of probability 

being insufficient for mathematics and statistics, took the studies in 

the field of mathematics one step further. In fact, the concepts of 

fuzzy and intuitionistic are naturally included in the definition of 

neutrosophic. After Cantor's set system, was generalized first with 

fuzzy sets by Zadeh and then with intuitionistic sets by Atanassov, a 
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generalization was made as neutrosophic sets by Smarandache. You 

can refer to the sources (Kausar et. al, 2023), (Bilgin and Bozma, 

2020) for studies on fuzzy and (for studies on intuitionistic fuzzy sets 

Bilgin, and Bozma, 2021), (Malik and Akram, 2018). Statistical 

convergence on neutrosophic normed space was first introduced by 

(Kirisci and Şimşek, 2020). Very soon after (Granados and Dhital, 

2021) Neutrosophic statistical convergence is defined using double-

indexed sequences in normed space. Neutrosophic triple normed 

space is presented by (Şahin and Kargın, 2017). Then, many kinds 

of convergence were transferred to Neutrosophic normed space. 

Since the subject of convergence has an important place in both 

mathematics and daily life problems, a lot of studies have been 

carried out since 2017 on the types of convergence on neutrosophic 

normed spaces. One is rough convergence. 

This type of convergence, which is thought to be helpful in 

checking the accuracy of numerical analysis and computer 

programming solutions and thus has the possibility of being applied 

in daily life, has taken its place in the literature with the studies 

carried out by (Phu, 2001) for normed spaces (finite dimensional). 

Later, this type of convergence was combined with the statistical 

type of convergence by Aytar, who has studies containing important 
evaluations about rough convergence from different perspectives. 

e.g. (Aytar, 2008), (Olmez and Aytar, 2021). 

 Rough statistical convergence is given for 

difference sequences in (Demir and Gumus, 2022).  On the other 

hand, Rough statistical convergence of triplet sequences is given in 

(Debnath and Subramanian, 2017).  In (Kisi and Gurdal, 2021), 

statistical convergence is defined of triplet difference sequences on 

neutrosophic normed space. Rough statistical convergence is studied 

using tripled sequences on neutrosophic normed spaces in (Bilgin, 

2022). 

After combining the notion of rough convergence of triplet 

sequences with statistical  convergence theory, now, the definition 

of rough statistical convergence of triplet difference sequences on 



 

--281-- 

 

neutrosophic normed space was established to complete the 

corresponding blank in the published. 

2. PRIOR INFORMATION  

(𝑡𝑛) is named to be statistically convergent to 𝑡 if for all 𝜀 > 0, 

𝛿({𝑛 ∈ ℕ: |𝑡𝑘 − 𝑡| ≥ 𝜀}) = 0. 

Here, the three-dimensional version of natural density is given (see 

e.g Sahiner et all, 2007) as: 

𝔇 ⊆  ℕ × ℕ × ℕ  is named having a natural density 𝛿3(𝔇), here 

𝛿3(𝔇) = lim
𝓅,𝓆,𝓇→∞

|𝔇(𝓅, 𝓆,𝓇)|

𝓅𝓆𝓇
 

exists. Here, |𝔇(𝓅, 𝓆, 𝓇)| demonstrate the numbers of (𝓃1, 𝓃2, 𝓃3) 
in 𝔇 where, 𝓅 ≥ 𝓃1, 𝓆 ≥ 𝓃2 𝑎𝑛𝑑 𝓇 ≥ 𝓃3. 

(Sahiner et all, 2007) gave statistical convergence of triple sequence. 

(ź𝓃1𝓃2𝓃3) is named to be statistical convergent to ź if for every 𝜀 >

0,  

𝛿3({(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ: |ź𝓃1𝓃2𝓃3 − ź| ≥ 𝜀}) = 0. 

Then, it is shown by 𝓈𝓉 − lim
𝓃1,𝓃2,𝓃3→∞

ź𝓃1𝓃2𝓃3 = ź.  

Let us recall the definition given by (Debnath and Subramanian, 

2017). 

(ź𝓃1𝓃2𝓃3)  is called to be rough convergent to ź  is shown by 

ź𝓃1𝓃2𝓃3 ⟶ 

  𝔯  ź such that for every 𝜀 > 0, ∃ 𝑛0 ∈ ℕ: 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0 

then |ź𝓃1𝓃2𝓃3 − ź| < 𝔯 + 𝜀.  

The rough limit set of (ź𝓃1𝓃2𝓃3)  is demonstrated with 

ℒ𝒾𝓂𝓃1𝓃2𝓃3
𝔯 ≔ {ź: ź𝓃1𝓃2𝓃3⟶

  𝔯  ź }.  It can be easily seen that rough 

limit set is not unique. 
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Let us recall some necessary information about the neutrosophic 

normed space. Let 𝕏 ≠ ∅, ℴ𝓉(𝑡), 𝜘𝑢(𝑡) and ℶ𝑓(𝑡) are the degrees of 

truth, falsity and uncertainty. We defined a neutrosophic set ℵ as: 

For all 𝑡 in 𝕏; ℴ𝓉(𝑡), 𝜘𝑢(𝑡) and ℶ𝑓(𝑡) ∈ [0,1], 

ℵ = {(𝑡, ℴ𝓉(𝑡), 𝜘𝑢(𝑡), ℶ𝑓(𝑡)) : 𝑡 ∈ 𝕏} , 0 ≤  ℴ𝓉(𝑡) + 𝜘𝑢(𝑡) +

ℶ𝑓(𝑡) ≤  2.  

Here, it must be pointed out that, 𝜘𝑢(𝑡)  is an independent 

component, ℴ𝓉(𝑡)  and ℶ𝑓(𝑡)  are dependent components. 

(Smarandache, 1998). 

 

Now, we remember definition of Neutrosophic Normed spaces given in 

(Kirisci and Simsek, 2020).  

 Let  𝕏  be a linear spaces, ⋆  and ⋄  demonstrate the continuous 

𝔱 − norm and continuous 𝔱 − conorm on ℝ . The notation of 

Neutrosophic Normed is 

{((𝑡, 𝔬), ℴ𝓉(𝑡, 𝔬), 𝜘𝑢(𝑡, 𝔬), ℶ𝑓(𝑡, 𝔬)): (𝑡, 𝔬)  ∈  𝕏 × (0,∞)}.  Here ℴ𝓉 , 

𝜘𝑢  and ℶ𝑓 shown the degree of correctness, uncertainty and falsity 

of (𝑡, 𝔬) on 𝕏 × (0,∞) fulfills the below criteria: For each 𝑡1, 𝑡2 ∈ 𝕏,  

i. For every 𝔬 ∈ ℝ+ ℴ𝓉(𝑡, 𝔬) + 𝜘𝑢(𝑡, 𝔬) + ℶ𝑓(𝑡, 𝔬) ≤ 2, 

ii. For every 𝔬1, 𝔬2 ∈ ℝ
+, 

ℴ𝓉(𝑡1, 𝔬1) ⋆ ℴ𝓉(𝑡2, 𝔬2) ≤ ℴ𝓉(𝑡1 + 𝑡2, 𝔬1 + 𝔬2), 
𝜘𝑢(𝑡1, 𝔬1) ⋄ 𝜘𝑢(𝑡2, 𝔬2) ≥ 𝜘𝑢(𝑡1 + 𝑡2, 𝔬1 + 𝔬2), 
ℶ𝑓(𝑡1, 𝔬1) ⋄ ℶ𝑓(𝑡2, 𝔬2) ≥ ℶ𝑓(𝑡1 + 𝑡2, 𝔬1 + 𝔬2). 

iii. For every  𝔭 ∈ ℝ+ , ℴ𝓉(𝑡, 𝔬) = 1  ⟺  𝑡 = 0,  𝜘𝑢(𝑡,𝔬) = 0  ⟺ 𝑡 = 0, 

ℶ𝑓(𝑡, 𝔬) = 0  ⟺ 𝑡 = 0, 

iv. For each 𝑢 ≠ 0, ℴ𝓉(𝑢𝔬, 𝔭) = ℴ𝓉 (𝔬,
𝔭

|𝑢|
),  𝜘𝑢(𝑢𝔬, 𝔭) =  𝜘𝑢 (𝔬,

𝔭

|𝑢|
) 

and ℶ𝑓(𝑢𝔬, 𝔭) = ℶ𝑓 (𝔬,
𝔭

|𝑢|
). 

v.  𝜘𝑢(𝔬,∙) and ℶ𝑓(𝔬,∙) are continuous non-increasing function and 

ℴ𝓉(𝔬,∙) is continuous non-decreasing function,  
vi. lim

𝑠→∞
ℴ𝓉(𝔬, 𝔭) = 1,  lim

𝑠→∞
 𝜘𝑢(𝔬, 𝔭) = 0 and  lim

𝑠→∞
ℶ𝑓(𝔬, 𝔭) = 0. 
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vii. If 𝑠 ≤ 0, ℴ𝓉(𝔬, 𝔭) = 0,  𝜘𝑢(𝔬, 𝔭) = 1 and ℶ𝑓(𝔬, 𝔭) = 1. 

So, (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓,⋆,⋄) is named Neutrosophic Normed Spaces. Here 

ℴ𝓉 and 𝜘𝑢 are interdependent and ℶ𝑓 is an independent components. 

Let (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  be a Neutrosophic Normed Spaces, 

(ź𝓃1𝓃2𝓃3) be a triple sequences. (ź𝓃1𝓃2𝓃3) is named to be rough 

convergent to  ź for some 𝕣 ∈ ℝ+ such that each 𝜀 > 0, there exits a 

𝑛0 ∈ ℕ  and 𝛾 ∈ (0,1) :for every 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0  if ℴ𝓉(ź𝓃1𝓃2𝓃3 −

ź, 𝕣 + 𝜀) > 1 − 𝛾 , 𝜘𝑢(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀) < 𝛾  and ℶ𝑓(ź𝓃1𝓃2𝓃3 −

ź, 𝕣 + 𝜀) < 𝛾.  Then, it is denote with 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ź𝓃1𝓃2𝓃3 = ź. 

(Bilgin, 2022). 

Let (ź𝓃1𝓃2𝓃3)  be a triple sequences in (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄) . 

(ź𝓃1𝓃2𝓃3)  is called to be rough statistically convergent to  ź  for 

some 𝕣 ∈  [0,∞) such that all 𝜀 > 0 and 𝛾 ∈ (0,1) where 

𝛿3( {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ: ℴ𝓉(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀)

≤ 1 − 𝛾 or 𝜘𝑢(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀)   

≥ 𝛾 𝑎𝑛𝑑  ℶ𝑓(ź𝓃1𝓃2𝓃3 − 𝑦,𝕣 + 𝜀) ≥ 𝛾}) = 0.  

Afterwards, it is indicated by 𝑠𝑡 − 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ź𝓃1𝓃2𝓃3 = ź. 

(Bilgin, 2022). 

For 𝕣 = 0 , rough statistical convergence consistent matching the 

statistical convergence on (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄). Let rough statistical 

limit set of (ź𝓃1𝓃2𝓃3) is denoted with; 

𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀(ź𝓃1𝓃2𝓃3) = {ź: 𝓈𝓉 − 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ź𝓃1𝓃2𝓃3 = ź}. 

 

3. MAIN RESULT 

Definition 3.1 Let (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄) be a Neutrosophic Normed 

Spaces, (ź𝓃1𝓃2𝓃3) be a triple sequences. (ź𝓃1𝓃2𝓃3) is named to be 
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rough ∆-convergent to  ź  for some 𝕣 ∈ ℝ+  such that each 𝜀 >
0, there exits a 𝑛0 ∈ ℕ and 𝛾 ∈ (0,1):for every 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0 if 

 ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ź, 𝕣 + 𝜀) > 1− 𝛾 , 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3

− ź, 𝕣 + 𝜀) < 𝛾, 

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź, 𝕣 + 𝜀) < 𝛾.  

for all 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0, where 𝓃1, 𝓃2, 𝓃3 ∈ ℕ, 

 ∆ź𝓃1𝓃2𝓃3= ź𝓃1𝓃2𝓃3 − ź𝓃1(𝓃2+1)𝓃3 − ź𝓃1𝓃2(𝓃3+1) +

ź𝓃1(𝓃2+1)(𝓃3+1) − ź(𝓃1+1)𝓃2𝓃3 

+ź(𝓃1+1)(𝓃2+1)𝓃3 + ź(𝓃1+1)𝓃2(𝓃3+1) − ź(𝓃1+1)(𝓃2+1)(𝓃3+1). 

In this case, it is denote with 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ∆ź𝓃1𝓃2𝓃3= ź. 

 

Definition 3.2 Let (ź𝓃1𝓃2𝓃3) be a triple sequences in (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓,

⋆,⋄). (ź𝓃1𝓃2𝓃3) is called to be rough statistically convergent to  ź for 

some 𝕣 ∈  [0,∞) such that each 𝜀 > 0 and 𝛾 ∈ (0,1)  if 

𝛿3( {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ: ℴ𝓉(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀)

≤ 1 − 𝛾 or 𝜘𝑢(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀)   

≥ 𝛾 𝑎𝑛𝑑 ℶ𝑓(ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀) ≥ 𝛾}) = 0 

 for all 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0, where 𝓃1, 𝓃2, 𝓃3 ∈ ℕ, 

 ∆ź𝓃1𝓃2𝓃3= ź𝓃1𝓃2𝓃3 − ź𝓃1(𝓃2+1)𝓃3 − ź𝓃1𝓃2(𝓃3+1) +

ź𝓃1(𝓃2+1)(𝓃3+1) − ź(𝓃1+1)𝓃2𝓃3 

+ź(1+𝓃1)(1+𝓃2)𝓃3 + ź(1+𝓃1)𝓃2(𝓃3+1) − ź(1+𝓃1)(1+𝓃2)(𝓃3+1). 

Then, it is denote with 𝓈𝓉 − 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ∆ź𝓃1𝓃2𝓃3= ź.  
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For 𝕣 = 0, rough statistical convergence in accordance to statistical 

convergence on (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄). Let rough statistical limit set of 

(∆ź𝓃1𝓃2𝓃3) is denoted with; 

𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) = {ź: 𝓈𝓉 − 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ∆ź𝓃1𝓃2𝓃3= ź}. 

Definition 3.3 Let (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄) be a Neutrosophic Normed 

Spaces, (ź𝓃1𝓃2𝓃3) be a triple sequences. (ź𝓃1𝓃2𝓃3) is named to be 

rough statistically bounded for some 𝕣 ∈ ℝ+  such that each 𝜀 >
0 and 𝛾 ∈ (0,1) if there exists a 𝒯 > 0 such that  

 

𝛿3 ({(𝓃1,𝓃2,𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
,𝒯)

≤ 1 − 𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
,𝒯) ≥ 𝛾  𝑎𝑛𝑑  

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
,  𝒯) ≥ 𝛾}) = 0 

where ∆ź𝓃1𝓃2𝓃3= ź𝓃1𝓃2𝓃3 − ź𝓃1(𝓃2+1)𝓃3 − ź𝓃1𝓃2(𝓃3+1) +

ź𝓃1(𝓃2+1)(𝓃3+1) − ź(𝓃1+1)𝓃2𝓃3 

+ź(𝓃1+1)(𝓃2+1)𝓃3 + ź(𝓃1+1)𝓃2(𝓃3+1) − ź(𝓃1+1)(𝓃2+1)(𝓃3+1). 

 

Now, using these descriptions, the next significant theorems for 

triple sequences in Neutrosophic normed spaces can be proved.  

 

Lemma 3.1 Let (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  be a Neutrosophic Normed 

Spaces, For a triple sequences (ź𝑚𝑛𝑜) and some 𝕣 ≥ 0, if 𝒮𝓉 − 𝕣 −

𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ≠ ∅  then (ź𝓃1𝓃2𝓃3)  is rough bounded sequnces in 

(𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄). 

 

Proof Let (ź𝑚𝑛𝑜)  be a triple sequences in (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  and 

some > 0, 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ≠ ∅. Then there exists ź and 

ź ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) . For all 𝜀 > 0 and 0 < 𝛾 < 1,  it is 

written  
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𝛿3 ({(𝓃1,𝓃2,𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ź,𝕣+ 𝜀)

≤ 1 − 𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ź,𝕣 + 𝜀) ≥ 𝛾   

 𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź,  𝕣+𝜀) ≥ 𝛾}) = 0. 

So, (ź𝓃1𝓃2𝓃3) is statistically bounded in (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄). 

 

Lemma 3.2 Let (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  be a Neutrosophic Normed 

Spaces, (ź𝓃1𝓃2𝓃3)  be a triple sequences. If (ź𝓃1𝓃2𝓃3)  is rough 

bounded sequnces in (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  then, for some 𝕣 ≥ 0,  if 

𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ≠ ∅. 

 

Proof (ź𝓃1𝓃2𝓃3)  be a triple sequences in (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄)  and 

(ź𝓃1𝓃2𝓃3)  is bounded sequnces. For each 𝜀 > 0 , 𝛾 ∈ (0,1)  and 

some 𝕣 ≥ 0 there exists a 𝒯 > 0 such that  

𝛿3 ({(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
,𝒯)

≤ 1 − 𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
,𝒯) ≥ 𝛾   

𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
,  𝒯) ≥ 𝛾}) = 0. 

Let a set of the form 

 𝔐 = {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ: ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 ,𝒯) ≤ 1 −

𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 ,𝒯) ≥ 𝛾  

 𝑎𝑛𝑑  ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
,𝒯) ≥ 𝛾} 

is defined. For (𝓃1, 𝓃2, 𝓃3) ∈𝔐
𝑐
, it is written ℴ𝓉 (∆ź𝓃1𝓃2𝓃3

,𝒯) >

1 − 𝛾  and 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
,𝒯) < 𝛾, ℶ𝑓 (∆ź𝓃1𝓃2𝓃3

,𝒯) < 𝛾.  Furthermore,  

ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
,𝕣 + 𝒯) > 1 −  𝛾  and 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3

, 𝕣 + 𝒯) <

𝛾, ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
,𝕣 + 𝒯) < 𝛾. 
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So 0 ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) . Hence 𝒮𝓉 − 𝕣 −

𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ≠ ∅. 

 

In the next part, some topological characteristics of the set of 𝒮𝓉 −

𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) will be examined. 

 

Theorem 3.1 Let (∆ź𝓃1𝓃2𝓃3
) is a triple sequences in (𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆

,⋄) then 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) is closed sets. 

 

Proof It's simple to demonstrate that 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) = ∅, 

so let 𝑆𝑡 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ≠ ∅.  Then, choosing a triple 

sequences (ź𝓃1𝓃2𝓃3)  and 0 < 𝛾′,  where 𝛾 ⋄ 𝛾 > 𝛾′, 1 − 𝛾′ < (1 −

𝛾) ⋆ (1 − 𝛾) and 𝑠𝑡 − 𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 ∆ź𝓃1𝓃2𝓃3= ź. It will be shown 

that ź ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3). Let 𝜀 > 0 and we use definition; 

there exists a 𝑛0 ∈ ℕ such that for 𝓃1, 𝓃2, 𝓃3 ≥ 𝑛0,  

ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ź,

𝜀

3
) > 1 − 𝛾 , 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3

− ź,
𝜀

3
) < 𝛾  and 

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź,

𝜀

3
) < 𝛾. 

If choosing ź𝑚′𝑛′𝑜′ ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3)  where 

𝓃1,̈ 𝓃2,̈ 𝓃3̈ > 𝑛0 such that  

𝛿3 ({(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

, 𝕣+
𝜀

3
)

≤ 1 − 𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,𝕣+
𝜀

3
) ≥ 𝛾   

𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,𝕣 +
𝜀

3
)  ≥ 𝛾}) = 0. 
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For (𝑎, 𝑏, 𝑐) ∈ {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ× ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
−

∆ź𝓃1̈𝓃2̈𝓃3̈
,𝕣+

𝜀

3
) > 1 − 𝛾 or 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3

− ∆ź𝓃1̈𝓃2̈𝓃3̈
,  𝕣+

𝜀

3
) <

𝛾 𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

, 𝕣+
𝜀

3
) < 𝛾}.  

Furthermore, 

 1 − 𝛾 ′ < (1 − 𝛾) ⋆ (1 − 𝛾) < ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź, 𝕣 +

𝜀) and 𝜘𝑢(∆ź𝑎𝑏𝑐 − ź,  𝕣 + 𝜀) ≤ 𝛾 ⋄ 𝛾 < 𝛾′,   

ℶ𝑓(ź𝓃1𝓃2𝓃3 − ź,𝕣+ 𝜀) ≤ 𝛾 ⋄ 𝛾 < 𝛾
′. So, 

(𝑎, 𝑏, 𝑐) ∈ {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀)

> 1 − 𝛾 or   

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ź, 𝕣 + 𝜀) < 𝛾 𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3

− ź, 𝕣+ 𝜀)< 𝛾}.  Then,  

{(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ∆ź𝓃1̈𝓃2̈𝓃3̈ , 𝕣 +
𝜀

3
)

> 1 − 𝛾, 

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,  𝕣+
𝜀

3
)

< 𝛾 and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,𝕣+
𝜀

3
)< 𝛾} 

⊆ {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ ×ℕ×ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ź, 𝕣+

𝜀

3
)

> 1 − 𝛾,𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− 𝑦,  𝕣 +

𝜀

3
) < 𝛾  

and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź,𝕣+

𝜀

3
)< 𝛾}. 

Then, 

 𝛿3 {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀) ≤ 1 −

𝛾  𝑜𝑟  

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ź,  𝕣 + 𝜀) ≥ 𝛾 and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3

− ź,𝕣+ 𝜀)≥ 𝛾} 
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≤ 𝛿3 {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ ×ℕ×ℕ: ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,𝕣+
𝜀

3
)

≤ 1 − 𝛾 𝑜𝑟 

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

,𝕣+
𝜀

3
)

≥ 𝛾 and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ∆ź𝓃1̈𝓃2̈𝓃3̈

, 𝕣+
𝜀

3
) ≥𝛾}. 

Thus,  

𝛿3  { (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀) ≤ 1 −

𝛾  𝑜𝑟 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 − ź,  𝕣 + 𝜀) ≥ 𝛾   and  

 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź,𝕣 + 𝜀)≥ 𝛾} = 0. 

Consequently, it is shown that ź ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3).  

 

Definition 3.4 Let (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄) be a Neutrosophic Normed 

Spaces. For some 𝕣 ∈ [0, ∞), every  𝜀 > 0 and 𝛾 ∈ (0,1), 

𝛿3  { (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź, 𝕣 + 𝜀) > 1 −

𝛾  𝑎𝑛𝑑 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 − ź,  𝕣 + 𝜀) < 𝛾   and   ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− 𝑧,𝕣+

𝜀)< 𝛾} ≠ 0,  

then, ź is termed rough statistical cluster point of (ź𝓃1𝓃2𝓃3). It is 

denote with 𝓈𝓉 − 𝕣 − ∆𝑐𝑙𝑠 point  of (ź𝓃1𝓃2𝓃3).  Let 𝒞∆ź𝓃1𝓃2𝓃3
𝕣 is 

demonstrated the set of each 𝓈𝓉 − 𝕣 − ∆𝑐𝑙𝑠 point of (ź𝓃1𝓃2𝓃3) in 

(𝒳,ℴ𝓉, 𝜘𝑢, ℶ𝑓, ⋆,⋄). 

 

Theorem 3.2 Let (𝒳, ℴ𝓉 , 𝜘𝑢, ℶ𝑓, 𝑚𝑖𝑛, 𝑚𝑎𝑥)  be a Neutrosophic 

Normed Spaces, (ź𝓃1𝓃2𝓃3) be a triple sequences. Then, for some 𝕣 ∈
[0, ∞), every  𝜀 > 0 and 𝛾 ∈ (0,1) the set 𝒞∆ź𝓃1𝓃2𝓃3

𝕣  is closed. 



 

--290-- 

 

 

Proof Let 𝒞∆ź𝓃1𝓃2𝓃3
𝕣 ≠ ∅ be taken as the proof for 𝒞∆ź𝓃1𝓃2𝓃3

𝕣 = ∅ is 

clear. Now, choosing (𝑢𝓃1𝓃2𝓃3) ⊆ 𝒞∆ź𝓃1𝓃2𝓃3
𝕣  and 

𝕣 −𝓃1,𝓃2,𝓃3→∞
       𝑙𝑖𝑚 𝑢𝓃1𝓃2𝓃3 = 𝑢. If 𝑢 ∈ 𝒞∆ź𝓃1𝓃2𝓃3

𝕣  is proven. If we use  

definition of rough convergence of sequences, for every 𝜀 > 0 and 

𝛾 ∈ (0,1) , there exists 𝑛0 ∈ ℕ  such that for 𝑚,𝑛, 𝑜 > 𝑛0, 

ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− 𝑢,

𝜀

3
) > 1 − 𝛾,  𝜘𝑢 (∆ź𝓃1𝓃2𝓃3

− 𝑢,
𝜀

3
) < 𝛾  and 

 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3 − 𝑢,
𝜀

3
) < 𝛾.  Choosing �̃� ∈ ℕ  where �̃� ≥ 𝑛0.  So, 

ℴ𝓉 (ź�̃�− 𝑢,
𝜀

3
) > 1 − 𝛾,𝜘𝑢 (ź�̃� − 𝑢,

𝜀

3
) < 𝛾  and ℶ𝑓(ź�̃� − 𝑢,

𝜀

3
) < 𝛾. 

Using (𝑢𝓃1𝓃2𝓃3) ⊆ 𝒞∆ź𝓃1𝓃2𝓃3
𝕣 , it is written ź�̃� ∈ 𝒞∆ź𝓃1𝓃2𝓃3

𝕣 . So  

𝛿3  ({ (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź�̃�, 𝕣 +
𝜀

3
) > 1 −

𝛾 , 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 − ź�̃�,  𝕣 +
𝜀

3
) < 𝛾   and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3

− ź�̃�,  𝕣+
𝜀

3
) <

𝛾}) ≠ 0. 

Taking  

(𝓃1̌, 𝓃2̌, 𝓃3̌) ∈ {(𝓃1, 𝓃2, 𝓃3)

∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 − ź�̃�, 𝕣 +
𝜀

3
) > 1 − 𝛾, 

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 − ź�̃�,  𝕣 +
𝜀

3
) < 𝛾 and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3 − ź�̃�,  𝕣 +

𝜀

3
) < 𝛾}. 

Hence, it is written that 

 ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌
− ź�̃�,𝕣+

𝜀

3
) > 1 − 𝛾, 𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌

− ź�̃�,  𝕣 +
𝜀

3
) < 𝛾 and 

ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌
− ź�̃�,  𝕣+

𝜀

3
) < 𝛾. Then, similarly 

ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌
− 𝑢,𝕣 + 𝜀) > 1 − 𝛾,𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌

− 𝑢,  𝕣+ 𝜀) < 𝛾  and 

ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌
− 𝑢,  𝕣 + 𝜀) < 𝛾. 

Then, 
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(𝓃1̌, 𝓃2̌, 𝓃3̌) ∈ {(𝓃1, 𝓃2, 𝓃3)

∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌ − 𝑢, 𝕣 + 𝜀) > 1 − 𝛾, 

𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌ − 𝑢,  𝕣 + 𝜀) < 𝛾 and ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌ − 𝑢,  𝕣 + 𝜀) < 𝛾}. 

So,  

𝛿3  ({ (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌ − ź�̃�, 𝕣 +
𝜀

3
) > 1 −

𝛾 , 𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌ − ź�̃�,  𝕣 +
𝜀

3
) < 𝛾   and ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌

− ź�̃�,  𝕣+
𝜀

3
) <

𝛾}) ≤ 𝛿3  ({ (𝓃1, 𝓃2, 𝓃3) ∈ ℕ×ℕ ×ℕ:ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌
− 𝑢,𝕣+

𝜀

3
) >

1− 𝛾 , 𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌
− 𝑢,  𝕣+

𝜀

3
) < 𝛾   and ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌

− 𝑢,  𝕣+
𝜀

3
) < 𝛾}). 

Using definition of natural density  

𝛿3  ({ (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1̌𝓃2̌𝓃3̌ − 𝑢, 𝕣 +
𝜀

3
) > 1 −

𝛾 , 𝜘𝑢 (∆ź𝓃1̌𝓃2̌𝓃3̌ − 𝑢,  𝕣 +
𝜀

3
) < 𝛾   and ℶ𝑓 (∆ź𝓃1̌𝓃2̌𝓃3̌

− 𝑢,  𝕣+
𝜀

3
) <

𝛾}) ≠ 0. 

So, 𝑢 ∈ 𝒞∆ź𝓃1𝓃2𝓃3
𝕣 .  

 

Theorem 3.3 Let (ź𝓃1𝓃2𝓃3) is a triple sequences in (𝒳, ℴ𝓉, 𝜘𝑢, ℶ𝑓,

𝑚𝑖𝑛, 𝑚𝑎𝑥) then the set 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) is convex. 

Proof 

For ź1, ź2 ∈ 𝑆𝑡 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3
) , 𝜀 > 0  and some  0 < 𝛼 < 1 , it 

will be shown that ((1 − 𝛼)𝑦1 + 𝛼𝑦2)  ∈ 𝒮𝓉 − 𝕣− 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3
). Let 

𝑅, �̃� be defined in next form: 
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𝑅 = {(𝓃1, 𝓃2, 𝓃3) ∈ ℕ× ℕ×ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ź1,

𝕣 + 𝜀

3(1 − 𝛼)
)

≤ 1 − 𝛾  𝑜𝑟   

𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ź1,  

𝕣 + 𝜀

3(1 − 𝛼)
)

≥ 𝛾  and ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź1,

𝕣 + 𝜀

3(1 − 𝛼)
) ≥ 𝛾}, 

Then, 

�̃� = { (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ × ℕ:ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3 − ź2,
𝕣 + 𝜀

3𝛼
)

≤ 1 − 𝛾  𝑜𝑟 

 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3 − ź2,  
𝕣 + 𝜀

3𝛼
) ≥ 𝛾 and   ℶ𝑓 (∆ź𝓃1𝓃2𝓃3 − ź2,

𝕣 + 𝜀

3𝛼
) ≥ 𝛾}. 

Using ź1, ź2 ∈ 𝒮𝓉 − 𝕣− 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3
),  it is written 𝛿3(𝑅) =

𝛿3(�̃�) = 0. Let (𝓃1̌, 𝓃2̌, 𝓃3̌) ∈ 𝑅
𝑐 ∩ �̃�𝑐, then  

ℴ𝓉 (∆ź𝓃1𝓃2𝓃3
− ((1 − 𝛼)ź1 + 𝛼ź2),𝕣 + 𝜀)

= ℴ𝓉 ((1 − 𝛼) (∆ź𝓃1𝓃2𝓃3
− ź1) + 𝛼 (∆ź𝓃1𝓃2𝓃3

− ź2) , 𝕣

+ 𝜀) 

≥ min {ℴ𝓉 ((1 − 𝛼) (∆ź𝓃1𝓃2𝓃3
− ź1) ,

𝕣 + 𝜀
2

) ,ℴ𝓉 (𝛼 (∆ź𝓃1𝓃2𝓃3

− ź2) ,
𝕣+ 𝜀
2

)} 

= min {ℴ𝓉 ((∆ź𝓃1𝓃2𝓃3
− ź1) ,

𝕣 + 𝜀
2(1 − 𝛼)

) ,ℴ𝓉 ((∆ź𝓃1𝓃2𝓃3
− ź2) ,

𝕣 + 𝜀
2𝛼

)}

> 1 − 𝛾, 
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𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
− ((1 − 𝛼)ź1 + 𝛼ź2),𝕣 + 𝜀) 

= 𝜘𝑢 ((1 − 𝛼) (∆ź𝓃1𝓃2𝓃3
− ź1) + 𝛼 (∆ź𝓃1𝓃2𝓃3

− ź2) ,𝕣 + 𝜀) 

≤ max {𝜘𝑢 ((1 − 𝛼)(∆ź𝓃1𝓃2𝓃3
− ź1) ,

𝕣 + 𝜀
2

) ,𝜘𝑢 (𝛼 (∆ź𝓃1𝓃2𝓃3

− ź2) ,
𝕣+ 𝜀
2

)} < 𝛾 

and  

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ((1 − 𝛼)ź1 + 𝛼ź2),𝕣 + 𝜀) 

= ℶ𝑓 ((1 − 𝛼) (∆ź𝓃1𝓃2𝓃3
− ź1) + 𝛼 (∆ź𝓃1𝓃2𝓃3

− ź2) ,𝕣+ 𝜀) 

≤ max {ℶ𝑓 ((∆ź𝓃1𝓃2𝓃3
− ź1) ,

𝕣 + 𝜀
2(1 − 𝛼)

) ,ℶ𝑓 (𝛼 (∆ź𝓃1𝓃2𝓃3
− ź2) ,

𝕣 + 𝜀
2

)}

< 𝛾. 

Then, it is written that  

𝛿3  ({ (𝓃1, 𝓃2, 𝓃3)  ∈ ℕ × ℕ × ℕ:ℴ𝓉 (∆ź𝓃1𝓃2𝓃3 −
( (1 − 𝛼)ź1 +

𝛼ź2), 𝕣 + 𝜀) ≤ 1 − 𝛾  or 𝜘𝑢(ź𝓃1𝓃2𝓃3 −((1 − 

𝛼)ź1 + 𝛼ź2), 𝕣 + 𝜀) ≥ 1 − 𝛾  and  ℶ𝑓 (∆ź𝓃1𝓃2𝓃3 − (
(1 − 𝛼)ź1 +

𝛼ź2), 𝕣 + 𝜀)≥ 1 − 𝛾}) = 0.  

Consequently, ((1 − 𝛼)ź1 + 𝛼ź2) ∈ 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3). So, 

it is shown that the set 𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) is convex. 
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Theorem 3.4 Let (𝒳, ℴ𝓉 , 𝜘𝑢, ℶ𝑓, 𝑚𝑖𝑛, 𝑚𝑎𝑥)  be a Neutrosophic 

Normed Spaces, (ź𝓃1𝓃2𝓃3) be a triple sequences. For some 𝕣 > 0, 

𝛾 ∈ (0,1) and a fixed 𝑤 ∈  𝒳,  

𝜎(𝑤, 𝛾, 𝕣) = {ź𝓃1𝓃2𝓃3:ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
−𝑤,𝕣)

> 1 − 𝛾, 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
−𝑤, 𝕣) ≤ 𝛾,  

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
−𝑤, 𝕣) ≤ 𝛾},   

also, 

𝜎(𝑤, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = {ź𝓃1𝓃2𝓃3:ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
−𝑤,𝕣)

≥ 1 − 𝛾, 𝜘𝑢 (∆ź𝓃1𝓃2𝓃3
−𝑤, 𝕣) 

< 𝛾, ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− 𝑤,𝕣) < 𝛾}. 

Then,  

𝒞∆ź𝓃1𝓃2𝓃3
𝕣 = ⋃ 𝜎(𝑤, 𝛾,𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑤∈𝒞∆ź𝓃1𝓃2𝓃3

 

Proof  

Let ź ∈  ⋃ 𝜎(𝑤, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑤∈𝒞ź𝓃1𝓃2𝓃3

. For some 𝕣 > 0 and  given   𝛾 ∈ (0,1) 

there exists 𝑤 ∈ 𝒞ź𝓃1𝓃2𝓃3
 such that ℴ𝓉( 𝑤 − ź, 𝕣) > 1 − 𝛾 , 𝜘𝑢(𝑤 −

ź, 𝕣) < 𝛾 and ℶ𝑓(𝑤 − ź, 𝕣) < 𝛾.  

Then, for �̅� > 0 if we use 𝑤 ∈ 𝒞ź𝓃1𝓃2𝓃3
, then there exists a set 

𝑃 = (𝓃1, 𝓃2, 𝓃3) ∈ ℕ × ℕ ×ℕ: ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
−𝑤, �̅�)

> 1 − 𝛾, 𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3
−𝑤, �̅�) < 𝛾,  

ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
−𝑤, �̅�) < 𝛾 

and 𝛿3(𝑃) ≠ 0. So, for (𝓃1, 𝓃2, 𝓃3) ∈ 𝑃,  

ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
− 𝑤,𝕣 + �̅�) ≥ min {ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3

−𝑤, �̅�) , ℴ𝓉(𝑤 −

ź, 𝕣) } >1 − 𝛾, 
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𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3
−𝑤, 𝕣+ �̅�)

≤ max {𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3
−𝑤, �̅�) , 𝜘𝑢(𝑤 − ź,𝕣) } < 𝛾 

and  

ℶ𝑓 ( ∆ź𝓃1𝓃2𝓃3
−𝑤,𝕣 + �̅�)

≤ max {ℶ𝑓 ( ∆ź𝓃1𝓃2𝓃3
− 𝑤, �̅�) , ℶ𝑓(𝑤 − ź, 𝕣) } <𝛾. 

From hence,  

𝛿3 {((𝓃1, 𝓃2, 𝓃3)  ∈ ℕ ×ℕ ×ℕ:ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
− ź,𝕣+ �̅�) > 1 −

𝛾, 𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3
− ź, 𝕣+ �̅�) < 𝛾 and 

 ℶ𝑓 ( ∆ź𝓃1𝓃2𝓃3
− ź,𝕣 + �̅�) < 𝛾)} ≠ 0. 

Thus, ź ∈ 𝒞ź𝓃1𝓃2𝓃3
𝕣

 and then ⋃ 𝜎(𝑤, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑤∈𝒞∆ź𝓃1𝓃2𝓃3

⊆ 𝒞ź𝓃1𝓃2𝓃3
𝕣 . 

It is easily demonstrated from definition that 𝒞ź𝓃1𝓃2𝓃3
𝕣 ⊆

⋃ 𝜎(𝑤, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑤∈𝒞∆ź𝓃1𝓃2𝓃3

 

 

Theorem 3.5 

Let (ź𝓃1𝓃2𝓃3) be a triple sequences in (𝒳, ℴ𝓉 , 𝜘𝑢, ℶ𝑓, 𝑚𝑖𝑛, 𝑚𝑎𝑥) and 

(ź𝓃1𝓃2𝓃3)  is statistically convergent to ź . For some 𝕣 > 0 , there 

exists 𝛾 ∈ (0,1) : 

𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) = 𝜎(𝑦, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Proof 

For �̈� > 0,  if we use statistical convergence of (ź𝓃1𝓃2𝓃3) , there 

exists 

𝑇 = {(𝓃1, 𝓃2, 𝓃3)  ∈ ℕ × ℕ × ℕ: ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
− ź, �̈�) ≤ 1 −

𝛾 𝑜𝑟 𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3
− ź, �̈�) ≥ 𝛾   

𝑎𝑛𝑑 ℶ𝑓 (∆ź𝓃1𝓃2𝓃3
− ź, �̈�) ≥ 𝛾} and 𝛿3(𝑇) = 0. 

Let 𝑠 ∈ 𝜎(ź, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and for (𝓃1, 𝓃2, 𝓃3) ∈ 𝑇
𝑐, then 
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ℴ𝓉 ( ∆ź𝓃1𝓃2𝓃3
− 𝑠, 𝕣 + �̈�) > 1 − 𝛾, 𝜘𝑢 ( ∆ź𝓃1𝓃2𝓃3

− 𝑠,𝕣+ �̈�) < 𝛾  and 

 ℶ𝑓 ( ∆ź𝓃1𝓃2𝓃3
− 𝑠,𝕣 + �̈�) < 𝛾. 

That is 𝑠 ∈ 𝒮𝓉 − 𝕣− 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3
).  So, 𝜎(ź, 𝛾,𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝒮𝓉 − 𝕣−

𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3
). Furthermore, 

𝒮𝓉 − 𝕣 − 𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) ⊆ 𝜎(ź, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  Consequently, 𝒮𝓉 − 𝕣 −

𝐿𝐼𝑀 (∆ź𝓃1𝓃2𝓃3) = 𝜎(ź, 𝛾, 𝕣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

4. CONCLUSION 

Rough convergence is an important concept for the fields of fuzzy, 

intuitionistic fuzzy and neutrosophic theory. We carry forward the 

notion of coarse statistical convergence defined on Neutrosophistic 

normed spaces using triple difference sequences. Thus, we extend 

some important well-known results. Important topological 

properties of the set of coarse statistical limit points are given. 
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